Building Shops

本文介绍了一道经典的动态规划问题,目标是在一排教室中选择若干位置建立糖果店,使得总成本最小。总成本包括建店费用及各非店铺教室到最近店铺距离之和。文章提供了完整的解题思路与代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 379    Accepted Submission(s): 144


Problem Description

HDU’s n classrooms are on a line ,which can be considered as a number line. Each classroom has a coordinate. Now Little Q wants to build several candy shops in these n classrooms.

The total cost consists of two parts. Building a candy shop at classroom i would have some cost ci. For every classroom P without any candy shop, then the distance between P and the rightmost classroom with a candy shop on P's left side would be included in the cost too. Obviously, if there is a classroom without any candy shop, there must be a candy shop on its left side.

Now Little Q wants to know how to build the candy shops with the minimal cost. Please write a program to help him.

 

 

Input

The input contains several test cases, no more than 10 test cases.
In each test case, the first line contains an integer n(1n3000), denoting the number of the classrooms.
In the following n lines, each line contains two integers xi,ci(109xi,ci109), denoting the coordinate of the i-th classroom and the cost of building a candy shop in it.
There are no two classrooms having same coordinate.

 

 

Output

For each test case, print a single line containing an integer, denoting the minimal cost.

 

 

Sample Input

3
1 2
2 3
3 4
4
1 7
3 1
5 10
6 1

Sample Output

5

11

 

 

// 一条直线上有 n 的教室,想要在这些点上建一些糖果店,建设糖果店的成本分为 2 部分,建设费,右边的非糖果店到这个糖果店的距离差的和(累加到是一个糖果店为止)

//典型DP题

dp[i] 为在 i 建造最后一个糖果店的最小花费的话

丛左到右 dp[i] = min(dp[i],dp[j]+shop[i].v-(n-i+1)*(shop[i].p-shop[j].p)) (1<=j<i) p是位置,v为建造费

还有就是需要排序,还有需要 long long 型

 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <algorithm>
 4 using namespace std;
 5 #define LL long long
 6 #define MX 3005
 7 struct Shop
 8 {
 9     LL p,v;
10     bool operator < (const Shop& b)const
11     {
12         return p<b.p;
13     }
14 }shop[MX];
15 LL dp[MX];
16 
17 int main()
18 {
19     int n;
20     while (scanf("%d",&n)!=EOF)
21     {
22         for (int i=1;i<=n;i++)
23             scanf("%I64d%I64d",&shop[i].p,&shop[i].v);
24         sort(shop+1,shop+1+n);
25         LL total = 0;
26         for (int i=1;i<=n;i++)
27             total += shop[i].p - shop[1].p;
28 
29         dp[1]=shop[1].v+total;
30         for (int i=2;i<=n;i++)
31         {
32             for (int j=1;j<i;j++)
33             {
34                 if (j==1) dp[i] = dp[j] + shop[i].v - (n-i+1)*(shop[i].p-shop[j].p);
35                 else dp[i] = min(dp[i],dp[j]+shop[i].v-(n-i+1)*(shop[i].p-shop[j].p));
36             }
37         }
38         LL ans = dp[1];
39         for (int i=2;i<=n;i++)
40             ans = min(dp[i],ans);
41         printf("%I64d\n",ans);
42     }
43     return 0;
44 }
View Code

 

 

 

转载于:https://www.cnblogs.com/haoabcd2010/p/6830968.html

<?php goto cM35w; P2m0R: $current = "\346\x94\266\xe8\xb4\xb9\55"; goto fvF7G; eCNNS: $building = pdo_fetchcolumn($sql, array("\x3a\x69\144" => $data[$k]["\x62\151\144"], "\72\x77\x65\151\144" => $mywe["\167\145\151\144"])); goto dY9_p; AopSv: if ($operation == "\x72\157\x6f\155\x70\x72\x69\x63\145\x6c\x69\x73\x74") { goto vuilG; } goto utz6A; uop0V: $rooms[$k]["\141\144\144\162\145\163\163"] = $building . "\55" . $address; goto qEnJf; skAnw: goto r4ssr; goto echC7; ZBz4b: $n++; goto mLVjf; oI2X7: $k = 0; goto G3sRH; BlWwl: $member = pdo_fetch($sql, array("\x3a\x77\145\x69\x64" => $mywe["\x77\x65\151\144"], "\72\x72\x69\144" => $item["\162\151\144"], "\x3a\142\151\144" => $item["\x62\x69\x64"], "\72\x74\151\144" => $item["\164\x69\144"], "\x3a\x68\x69\x64" => $item["\150\x69\144"])); goto NXAjC; iEIIs: $url = $this->my_mobileurl($url); goto vxFCQ; bM1hj: $data[$k]["\162\145\147\x69\157\x6e"] = $region; goto hmq_V; UElrE: pdo_query($sql, array("\x3a\167\145\151\144" => $mywe["\167\x65\x69\144"], "\72\x72\151\x64" => $region["\x69\144"])); goto rOO2Y; XOR6F: RKome: goto w9I7h; kPME9: xCJBq: goto JOdZm; xN91P: $regions = pdo_fetchall($sql, $params); goto d7hMW; ZBxU2: $m++; goto T8sUg; QNhp9: $m++; goto YJOOb; Q7kbV: $myshop[$locations[$n]["\x69\144"]] = $shops; goto qVyhG; rPnCV: $itemids = pdo_fetchall($sql, array("\x3a\x77\145\151\x64" => $mywe["\167\145\151\144"], "\72\162\151\x64" => $rooms[$k]["\162\151\144"], "\72\x62\x69\x64" => $rooms[$k]["\x62\151\x64"], "\x3a\x74\x69\144" => $rooms[$k]["\164\x69\144"], "\x3a\x68\x69\x64" => $rooms[$k]["\x69\144"])); goto oxgBB; IlTHx: $condition .= "\40\x41\116\104\40\142\x69\x64\75\40" . $_GPC["\x62\x69\144"]; goto vOpwt; WdUSr: Czb5l: goto lm0hQ; txLEv: if ($_GPC["\x65\156\144\x6d\157\x6e\x74\150"]) { goto rFC79; } goto HuXnp; sEIBl: if (!empty($room["\x6d\x6f\142\x69\154\145"])) { goto QH0Wj; } goto qPlNs; RuxhW: if ($region["\151\x73\165\x6e\x69\x74"] == 1) { goto qTs7V; } goto uop0V; P6zNH: if (!$_W["\x69\x73\160\x6f\1
最新发布
03-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值