[leetcode-377-Combination Sum IV]

本文探讨了组合总和IV问题,即给定一个只包含正整数且不含重复元素的数组,找出所有可能的组合方式,使得这些组合的元素之和等于一个给定的正整数目标值。文章通过动态规划的方法解决该问题,并提供了详细的实现代码。

Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4

The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)

Note that different sequences are counted as different combinations.

Therefore the output is 7.

 

Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?

思路:

参考自:http://www.cnblogs.com/grandyang/p/5705750.html

这道题的真正解法应该是用DP来做,解题思想有点像之前爬梯子的那道题Climbing Stairs,我们需要一个一维数组dp,其中dp[i]表示目标数为i的解的个数,然后我们从1遍历到target,对于每一个数i,遍历nums数组,如果i>=x, dp[i] += dp[i - x]。这个也很好理解,比如说对于[1,2,3] 4,这个例子,当我们在计算dp[3]的时候,3可以拆分为1+x,而x即为dp[2],3也可以拆分为2+x,此时x为dp[1],3同样可以拆为3+x,此时x为dp[0],我们把所有的情况加起来就是组成3的所有情况了,参见代码如下:

int combinationSum4(vector<int>& nums, int target)
     {
         sort(nums.begin(), nums.end());
         vector<int>dp(target+1,0);
         dp[0] = 1;
         for (int i = 1; i <= target;i++)
         {
             for (int a : nums)
             {
                 if (i<a)break;//a排序后只能越来越大 i>=a才有意义 否则提前结束内部循环
                 dp[i] += dp[i - a];
             }
         }
         return dp[target];
     }

 

转载于:https://www.cnblogs.com/hellowooorld/p/7073585.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值