CF1005D Polycarp and Div 3 思维

此博客介绍了如何通过在指定数字中进行任意垂直切割来最大化获得可被3整除的数字数量的方法。通过遍历并考虑不同情况,包括单独的数能否被3整除、余数的影响以及切割后的数与之前的数的关系,实现最优切割策略。代码示例展示了实际操作过程。
Polycarp and Div 3
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarp likes numbers that are divisible by 3.

He has a huge number ss. Polycarp wants to cut from it the maximum number of numbers that are divisible by 33. To do this, he makes an arbitrary number of vertical cuts between pairs of adjacent digits. As a result, after mm such cuts, there will be m+1m+1 parts in total. Polycarp analyzes each of the obtained numbers and finds the number of those that are divisible by 33.

For example, if the original number is s=3121s=3121, then Polycarp can cut it into three parts with two cuts: 3|1|213|1|21. As a result, he will get two numbers that are divisible by 33.

Polycarp can make an arbitrary number of vertical cuts, where each cut is made between a pair of adjacent digits. The resulting numbers cannot contain extra leading zeroes (that is, the number can begin with 0 if and only if this number is exactly one character '0'). For example, 007, 01 and 00099 are not valid numbers, but 90, 0 and 10001 are valid.

What is the maximum number of numbers divisible by 33 that Polycarp can obtain?

Input

The first line of the input contains a positive integer ss. The number of digits of the number ss is between 11 and 21052⋅105, inclusive. The first (leftmost) digit is not equal to 0.

Output

Print the maximum number of numbers divisible by 33 that Polycarp can get by making vertical cuts in the given number ss.

Examples
input
Copy
3121
output
Copy
2
input
Copy
6
output
Copy
1
input
Copy
1000000000000000000000000000000000
output
Copy
33
input
Copy
201920181
output
Copy
4
Note

In the first example, an example set of optimal cuts on the number is 3|1|21.

In the second example, you do not need to make any cuts. The specified number 6 forms one number that is divisible by 33.

In the third example, cuts must be made between each pair of digits. As a result, Polycarp gets one digit 1 and 3333 digits 0. Each of the 3333 digits 0 forms a number that is divisible by 33.

In the fourth example, an example set of optimal cuts is 2|0|1|9|201|81. The numbers 00, 99, 201201 and 8181 are divisible by 33.

 

题意:给我们一个数,我们可以对这个数进行任意的划分,但是不能出现前缀零的无意义数,问我们最多可以划分出几个可以整除三的数?

分析:直接遍历,考虑这四种情况就可以

1.如果单独的数能整除三,那么这数肯定可以,结果直接加一

2.如果不能整除三,那么将得到一个余数,然后接下来我们会在这个数的基础上加上新的数,如果余数和这个数的余数相同,则中间肯定加了一个能整除三的数,结果加一

3.如果不能整除三的数加上一个数后能整除三,则结果加一

4.如果不能整除三的数加上一个数既不能整除三且余数和之前不相同,则再加一个数肯定会得到和前面两个数相同的余数或者整除三

根据以上分析我们每次加数时将余数打上标志,然后根据上诉分析判断结果是否能加一,记得结果加一后要把标志置为0

 

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 2e5 + 10;
const int mod = 1e9 + 7;
typedef long long ll;
int main() {
    string s;
    while( cin >> s ) {
        ll now = 0, cnt = 0, vis[3] = { 1, 0, 0 };
        for( ll i = 0; i < s.length(); i ++ ) {
            now += s[i]-'0';
            now %= 3;
            if( vis[now] ) {
                cnt ++;
                now = 0;
                vis[1] = vis[2] = 0;
            } else {
                vis[now] = 1;
            }
        }
        cout << cnt << endl;
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/l609929321/p/9313534.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值