Codeforces Round #317 (Div. 2) D Minimization (贪心+dp)

本文介绍了一种通过动态规划解决特定数组排列问题的方法,目的是使调整后数组中特定分组的元素差值之和达到最小。文章详细阐述了解题思路,并提供了一个完整的C++代码实现。
D. Minimization
time limit per test 
2 seconds
memory limit per test 
256 megabytes
input 
standard input 
output 
standard output

You've got array A, consisting of n integers and a positive integer k. Array A is indexed by integers from 1 to n.

You need to permute the array elements so that value

became minimal possible. In particular, it is allowed not to change order of elements at all.
Input

The first line contains two integers n, k (2 ≤ n ≤ 3·105, 1 ≤ k ≤ min(5000, n - 1)).

The second line contains n integers A[1], A[2], ..., A[n] ( - 109 ≤ A[i] ≤ 109), separate by spaces — elements of the array A.

Output

Print the minimum possible value of the sum described in the statement.

You've got array A, consisting of n integers and a positive integer k. Array A is indexed by integers from 1 to n.

You need to permute the array elements so that value

became minimal possible. In particular, it is allowed not to change order of elements at all.
Input

The first line contains two integers n, k (2 ≤ n ≤ 3·105, 1 ≤ k ≤ min(5000, n - 1)).

The second line contains n integers A[1], A[2], ..., A[n] ( - 109 ≤ A[i] ≤ 109), separate by spaces — elements of the array A.

Output

Print the minimum possible value of the sum described in the statement.

按照下标取模后的值可以分成k组,对于一组来说,按照升序排相邻的差之和是最小的,可用交换法证明,不难看出,总和等于a[end]-a[start]。对于不同的两组,

公共元素一定在端点,同样交换法可证,因此将整个数组排序以后相同一组一定连续。有n%k个长度为n/k+1的,其他的长度为n/k。

因此需要决策长度的选法,定义dp[i][j]表示选了i个长度为n/k+1,j个长度为n/k的组的最小花费。那么决策是下一个区间是长或者是短,边界条件dp[0][0] = 0表示什么也不选的时候花费为0。dp[i][j] = min(dp[i-1][j]+cost(i-1,j,L),dp[i][j-1]+cost(i,j-1,S))。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5+5, maxk = 5001;
int a[maxn];
int dp[2][maxk];
int n,k,len;

int cost(int i,int j,int L)
{
    int s = (i+j)*len+i, e = s+len+L-1;
    return a[e]-a[s];
}

int main()
{
    //freopen("in.txt","r",stdin);
    scanf("%d%d",&n,&k);
    for(int i = 0; i < n; i++) scanf("%d",a+i);
    sort(a,a+n);
    int tot = k, r = n%k;
    int L = r, S = tot-r;
    len = n/k;
    for(int i = 0; i <= L; i++){
        int cur = i&1, pre = cur^1;
        for(int j = 0; j <= S; j++){
            if(i && j) dp[cur][j] = min(dp[pre][j]+cost(i-1,j,1),dp[cur][j-1]+cost(i,j-1,0));
            else if(i) dp[cur][j] = dp[pre][j]+cost(i-1,j,1);
            else if(j) dp[cur][j] = dp[cur][j-1]+cost(i,j-1,0);
            else dp[cur][j] = 0;
        }
    }
    printf("%d",dp[L&1][S]);
    return 0;
}

 

 

 

转载于:https://www.cnblogs.com/jerryRey/p/4752965.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值