[裴礼文数学分析中的典型问题与方法习题参考解答]4.5.18

本文通过巧妙的变量替换和分部积分法,详细证明了一个特定的无穷积分等于π/(2√2)。该证明不仅展示了数学分析的魅力,还提供了解决类似积分问题的方法。

证明: $$\bex \int_0^\infty \frac{\rd x}{1+x^4}=\int_0^\infty \frac{x^2}{1+x^4}\rd x=\frac{\pi}{2\sqrt{2}}. \eex$$ (北京航空航天大学)

 

证明: $$\beex\bea I&\equiv \int_0^\infty \frac{\rd x}{1+x^4} =\int_0^\infty \frac{1}{1+\sex{\frac{1}{t}}^4}\cdot \frac{1}{t^2}\rd t\quad\sex{t=\frac{1}{x}}\\ & =\int_0^\infty \frac{t^2}{1+t^4}\rd t =\frac{1}{2}\int_0^\infty \frac{1+t^2}{1+t^4}\rd t =\frac{1}{2}\int_0^\infty \frac{\frac{1}{t^2}+1}{\frac{1}{t^2}+t^2}\rd t\\ &=\frac{1}{2}\int_0^\infty \frac{1}{\sex{t-\frac{1}{t}}^2+2}\rd \sex{t-\frac{1}{t}} =\frac{1}{2}\int_{-\infty}^{+\infty} \frac{1}{s^2+2}\rd s\quad\sex{s=t-\frac{1}{t}}\\ &=\frac{1}{\sqrt{2}}\int_0^\infty \frac{1}{1+\sex{\frac{s}{\sqrt{2}}}^2}\rd \frac{s}{\sqrt{2}} =\frac{1}{\sqrt{2}}\cdot \frac{\pi}{2} =\frac{\pi}{2\sqrt{2}}. \eea\eeex$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值