Maximum Subarray [LEETCODE]

本文介绍如何使用O(n)复杂度找到数组中连续子数组的最大和,包括实例演示和不同解题思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

====================================================================================

Consider an array A[i,....,j,j+1]. If we know its lagest subarrya is A[i,...,j].

Then the new array's lagest sum subarray may same as the array A[i,...j], or is A[i,...j,j+1].

That's only depends on if A[j+1] is larger than sum(A[i,...j]).

 

 1 class Solution {
 2 public:
 3     int maxSubArray(int A[], int n) {
 4         // Note: The Solution object is instantiated only once and is reused by each test case.
 5        int max_sum = INT_MIN;
 6        int sum = 0;
 7        for(int i = 0; i < n; i++) {
 8            sum = max(sum + A[i], A[i]);
 9            max_sum = max(max_sum, sum);
10        }
11        return max_sum;
12 
13     }
14 };

 

转载于:https://www.cnblogs.com/scenix/p/3369912.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值