PyalgoTrade 绘图(七)

本文介绍了一个基于PyAlgoTrade实现的简单交易策略——SMA交叉策略。该策略利用简单移动平均线(SMA)进行买卖信号判断,并通过Python代码详细展示了策略的具体实现过程。此外,还介绍了如何使用PyAlgoTrade的StrategyPlotter模块来可视化策略的执行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyAlgoTrade使得绘制策略执行变得非常简单

from pyalgotrade import strategy
from pyalgotrade.technical import ma
from pyalgotrade.technical import cross


class SMACrossOver(strategy.BacktestingStrategy):
    def __init__(self, feed, instrument, smaPeriod):
        super(SMACrossOver, self).__init__(feed)
        self.__instrument = instrument
        self.__position = None
        # We'll use adjusted close values instead of regular close values.
        self.setUseAdjustedValues(True)
        self.__prices = feed[instrument].getPriceDataSeries()
        self.__sma = ma.SMA(self.__prices, smaPeriod)

    def getSMA(self):
        return self.__sma

    def onEnterCanceled(self, position):
        self.__position = None

    def onExitOk(self, position):
        self.__position = None

    def onExitCanceled(self, position):
        # If the exit was canceled, re-submit it.
        self.__position.exitMarket()

    def onBars(self, bars):
        # If a position was not opened, check if we should enter a long position.
        if self.__position is None:
            if cross.cross_above(self.__prices, self.__sma) > 0:
                shares = int(self.getBroker().getCash() * 0.9 / bars[self.__instrument].getPrice())
                # Enter a buy market order. The order is good till canceled.
                self.__position = self.enterLong(self.__instrument, shares, True)
        # Check if we have to exit the position.
        elif not self.__position.exitActive() and cross.cross_below(self.__prices, self.__sma) > 0:
            self.__position.exitMarket()
from pyalgotrade import plotter
from pyalgotrade.barfeed import yahoofeed
from pyalgotrade.stratanalyzer import returns
import sma_crossover

# Load the yahoo feed from the CSV file
feed = yahoofeed.Feed()
feed.addBarsFromCSV("orcl", "orcl-2000.csv")

# Evaluate the strategy with the feed's bars.
myStrategy = sma_crossover.SMACrossOver(feed, "orcl", 20)

# Attach a returns analyzers to the strategy.
returnsAnalyzer = returns.Returns()
myStrategy.attachAnalyzer(returnsAnalyzer)

# Attach the plotter to the strategy.
plt = plotter.StrategyPlotter(myStrategy)
# Include the SMA in the instrument's subplot to get it displayed along with the closing prices.
plt.getInstrumentSubplot("orcl").addDataSeries("SMA", myStrategy.getSMA())
# Plot the simple returns on each bar.
plt.getOrCreateSubplot("returns").addDataSeries("Simple returns", returnsAnalyzer.getReturns())

# Run the strategy.
myStrategy.run()
myStrategy.info("Final portfolio value: $%.2f" % myStrategy.getResult())

# Plot the strategy.
plt.plot()

代码正在做3件事情:

  • 从CSV文件加载Feed。
  • 使用Feed提供的栏和附带的StrategyPlotter来运行策略。
  • 制定策略
    如下样子:



作者:readilen
链接:http://www.jianshu.com/p/b90f58c6a54c
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

转载于:https://www.cnblogs.com/zhanglong8681/p/7569242.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值