【E - ECJTU_ACM 11级队员2012年暑假训练赛(2)】

本文介绍了一种通过构建排水系统模型来计算从水源到目的地的最大排水量的方法。该方法使用了图论中的最大流算法,具体实现了Dinic算法,并通过一个示例程序详细解释了其工作原理。
E - E
Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

  1 // Project name : E
  2 // File name    : main.cpp
  3 // Author       : Izumu
  4 // Date & Time  : Tue Jul 10 15:13:33 2012
  5 
  6 #include <iostream>
  7 #include <vector>
  8 #include <algorithm>
  9 #include <string>
 10 #include <queue>
 11 #include <stack>
 12 #include <cstring>
 13 #include <cstdio>
 14 #include <iomanip>
 15 using namespace std;
 16 const int inf=0x3f3f3f3f;
 17 const int maxn=222;
 18 int c[maxn][maxn];
 19 int f[maxn][maxn];
 20 bool you[maxn][maxn];
 21 int cen[maxn];
 22 int n,m;
 23 int tx,ty,tc;
 24 vector<int>g[maxn];
 25 queue<int>q;
 26 bool bfs()
 27 {
 28     memset(cen,-1,sizeof(cen));
 29     while (!q.empty()) q.pop();
 30     q.push(1);
 31     cen[1]=0;   
 32     int now;
 33     while(!q.empty()) 
 34     {
 35         now=q.front();
 36         q.pop();
 37         for(int i=0;i<g[now].size();i++)
 38         {
 39             if(you[now][g[now][i]] && cen[g[now][i]] == -1)
 40             {   
 41                 cen[g[now][i]]= cen[now] + 1;
 42                 q.push(g[now][i]);
 43             }
 44         }    
 45     }  
 46     return cen[n]!=-1; 
 47 }
 48 int dfs(int flow=inf,int now=1)
 49 {
 50     if(cen[now] == cen[n] )
 51     {       
 52         if(now == n)
 53         {
 54             return flow;
 55         }
 56         else
 57         {   
 58             return 0;
 59         }
 60     }
 61     int temp,sum;
 62     sum = 0;
 63     for(int i=0;i<g[now].size();i++)
 64     {
 65         if(cen[g[now][i]] - cen[now]  !=1 || !you[now][g[now][i]] || cen[g[now][i]] > cen[n] )
 66         {
 67             continue;
 68         }
 69         temp = dfs (min(c[now][g[now][i]] - f[now][g[now][i]] , flow) , g[now][i]);        
 70         f[now][g[now][i]] += temp;
 71         f[g[now][i]][now] -= temp;
 72         if(f[now][g[now][i]] == c[now][g[now][i]]) 
 73         {
 74             you[now][g[now][i]] = false;
 75         }            
 76         you[g[now][i]][now] = true;
 77         sum += temp;
 78         flow -= temp;
 79     }            
 80     return sum;
 81 }
 82 
 83 int dinic()
 84 {
 85     int ans=0;
 86     while( bfs() )
 87     {
 88         ans+=dfs();    
 89     }      
 90     return ans;
 91 }
 92 
 93 int main()
 94 {
 95     while(cin>>m>>n)
 96     {                           
 97         memset(c,0,sizeof(c));
 98         memset(f,0,sizeof(f));
 99         memset(you,false,sizeof(you));
100         for(int i=1;i<=n;i++)
101         {   
102             g[i].clear();
103         }
104         for(int i=1;i<=m;i++)
105         {
106             cin>>tx>>ty>>tc;
107             c[tx][ty]+=tc;
108             you[tx][ty]=true;
109             g[tx].push_back(ty);
110             g[ty].push_back(tx);
111         }
112         cout<<dinic()<<endl;       
113     }   
114     return 0; 
115 }
116 
117 // end 
118 // ism 

 

转载于:https://www.cnblogs.com/ismdeep/archive/2012/07/10/2584780.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值