Codeforces Round #204 (Div. 2)

D. Jeff and Furik
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Jeff has become friends with Furik. Now these two are going to play one quite amusing game.

At the beginning of the game Jeff takes a piece of paper and writes down a permutation consisting of n numbers: p1, p2, ..., pn. Then the guys take turns to make moves, Jeff moves first. During his move, Jeff chooses two adjacent permutation elements and then the boy swaps them. During his move, Furic tosses a coin and if the coin shows "heads" he chooses a random pair of adjacent elements with indexes iand i + 1, for which an inequality pi > pi + 1 holds, and swaps them. But if the coin shows "tails", Furik chooses a random pair of adjacent elements with indexes i and i + 1, for which the inequality pi < pi + 1 holds, and swaps them. If the coin shows "heads" or "tails" and Furik has multiple ways of adjacent pairs to take, then he uniformly takes one of the pairs. If Furik doesn't have any pair to take, he tosses a coin one more time. The game ends when the permutation is sorted in the increasing order.

Jeff wants the game to finish as quickly as possible (that is, he wants both players to make as few moves as possible). Help Jeff find the minimum mathematical expectation of the number of moves in the game if he moves optimally well.

You can consider that the coin shows the heads (or tails) with the probability of 50 percent.

Input

The first line contains integer n (1 ≤ n ≤ 3000). The next line contains n distinct integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the permutation p. The numbers are separated by spaces.

Output

In a single line print a single real value — the answer to the problem. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6.

Examples
input
2
1 2
output
0.000000
input
5
3 5 2 4 1
output
13.000000
Note

In the first test the sequence is already sorted, so the answer is 0.

就是现在给出一个1~n的排列, Jeff和Furik分别轮流进行操作, Jeff先手, Jeff会选择相邻的两个数p[i], p[i + 1]交换位置, 然后轮到Furik, Furiki每次都会抛一个硬币, 出现正面就在序列中选取相邻的满足p[i] > p[i + 1]的两个数交换, 出现反面则选取任意一个相邻的满足p[i] < p[i + 1]的一对数进行交换, 操作时当这个序列变成递增序列的时候操作结束, 假设Jeff每一步都操作都最优(使得接下来剩余的操作次数最少)那么问一共需要的操作步数的期望是多少

其实这个期望就是逆序对数乘2?但是提交了并不对,所以是不是我想的不对啊, Jeff肯定会让逆序数-1,但是Furik是有0.5的可能让逆序数减1,所以如果逆序数是奇数的话,最后一次是Jeff啊,所以需要减1的,但是偶数就不用了

#include <bits/stdc++.h>
using namespace std;
int c[3005];
int n;
int lowbit(int i)
{
    return i&(-i);
}
int insert(int i,int x)
{
    while(i<=n)
    {
        c[i]+=x;
        i+=lowbit(i);
    }
    return 0;
}

int getsum(int i)
{
    int sum=0;
    while(i>0)
    {
        sum+=c[i];
        i-=lowbit(i);
    }
    return sum;
}
int main()
{
    while(cin>>n)
    {
        int ans=0;
        memset(c,0,sizeof(c));
        for(int i=1; i<=n; i++)
        {
            int a;
            cin>>a;
            insert(a,1);
            ans+=i-getsum(a);
        }
        if (ans&1) cout<<2*ans-1<<endl;
        else cout<<2*ans<<endl;
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/BobHuang/p/7337854.html

资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在 IT 领域,文档格式转换是常见需求,尤其在处理多种文件类型时。本文将聚焦于利用 Java 技术栈,尤其是 Apache POI 和 iTextPDF 库,实现 doc、xls(涵盖 Excel 2003 及 Excel 2007+)以及 txt、图片等格式文件向 PDF 的转换,并实现在线浏览功能。 先从 Apache POI 说起,它是一个强大的 Java 库,专注于处理 Microsoft Office 格式文件,比如 doc 和 xls。Apache POI 提供了 HSSF 和 XSSF 两个 API,其中 HSSF 用于读写老版本的 BIFF8 格式(Excel 97-2003),XSSF 则针对新的 XML 格式(Excel 2007+)。这两个 API 均具备读取和写入工作表、单元格、公式、样式等功能。读取 Excel 文件时,可通过创建 HSSFWorkbook 或 XSSFWorkbook 对象来打开相应格式的文件,进而遍历工作簿中的每个 Sheet,获取行和列数据。写入 Excel 文件时,创建新的 Workbook 对象,添加 Sheet、Row 和 Cell,即可构建新 Excel 文件。 再看 iTextPDF,它是一个用于生成和修改 PDF 文档的 Java 库,拥有丰富的 API。创建 PDF 文档时,借助 Document 对象,可定义页面尺寸、边距等属性来定制 PDF 外观。添加内容方面,可使用 Paragraph、List、Table 等元素将文本、列表和表格加入 PDF,图片可通过 Image 类加载插入。iTextPDF 支持多种字体和样式,可设置文本颜色、大小、样式等。此外,iTextPDF 的 TextRenderer 类能将 HTML、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值