Description
WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:
- p, q, r, s, and t are WFFs
- if w is a WFF, Nw is a WFF
- if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.
- p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
- K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.
|
w x | Kwx | Awx | Nw | Cwx | Ewx |
1 1 | 1 | 1 | 0 | 1 | 1 |
1 0 | 0 | 1 | 0 | 0 | 0 |
0 1 | 0 | 1 | 1 | 1 | 0 |
0 0 | 0 | 0 | 1 | 1 | 1 |
A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the value 0 for p=0, q=1.
You must determine whether or not a WFF is a tautology.
Input
Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case.
Output
For each test case, output a line containing tautology or not as appropriate.
Sample Input
ApNp ApNq 0
Sample Output
tautology not
【题目来源】
Waterloo Local Contest, 2006.9.30
http://poj.org/problem?id=3295
【题目大意】
给你一个合式公式,让你判断是否为重言式。
【题目分析】
这题考了一些离散数学的概念在里面,题目并不难,就是构造加模拟。
使用一个栈来从后往前计算。
AC代码:
#include<cstring>
#define MAX 110
using namespace std;
int a [ MAX ];
char str [ MAX ];
void calc( int p , int q , int r , int s , int t)
{
int top = 0;
int t1 , t2;
int len = strlen( str);
for( int i = len - 1; i >= 0; i --) //所有的都判断一遍,直到a[0]
{
if( str [ i ] == 'p') a [ top ++ ] =p;
else if( str [ i ] == 'q') a [ top ++ ] = q;
else if( str [ i ] == 'r') a [ top ++ ] = r;
else if( str [ i ] == 's') a [ top ++ ] =s;
else if( str [ i ] == 't') a [ top ++ ] = t;
if( str [ i ] == 'K')
{
t1 = a [ -- top ];
t2 = a [ -- top ];
a [ top ++ ] = t1 && t2;
}
else if( str [ i ] == 'A')
{
t1 = a [ -- top ];
t2 = a [ -- top ];
a [ top ++ ] = t1|| t2;
}
else if( str [ i ] == 'N')
{
t1 = a [ -- top ];
a [ top ++ ] =! t1;
}
else if( str [ i ] == 'C')
{
t1 = a [ -- top ];
t2 = a [ -- top ];
if( t1 == 1 && t2 == 0)
a [ top ++ ] = 0;
else a [ top ++ ] = 1;
}
else if( str [ i ] == 'E')
{
t1 = a [ -- top ];
t2 = a [ -- top ];
if( t1 == t2)
a [ top ++ ] = 1;
else a [ top ++ ] = 0;
}
}
}
bool judge()
{
int p , q , r ,s , t;
for(p = 0;p < 2;p ++) //枚举所有的情况
for( q = 0; q < 2; q ++)
for( r = 0; r < 2; r ++)
for(s = 0;s < 2;s ++)
for( t = 0; t < 2; t ++)
{
calc(p , q , r ,s , t);
if( a [ 0 ] == 0)
{
return false;
}
}
return true;
}
int main()
{
while( cin >> str)
{
if( strcmp( str , "0") == 0) break;
if( judge())
cout << "tautology" << endl;
else cout << "not" << endl;
}
}