131.008 Unsupervised Learning - Principle component Analysis |PCA | 非监督学习 - 主成分分析...

本文介绍了主成分分析(PCA)的基本概念及其在人脸识别中的应用。PCA作为一种有效的特征选择方法,能够将高维的人脸图像数据转换为低维表示,同时保留关键特征。文章通过实例演示了如何使用PCA进行人脸识别,并探讨了其在减少噪声、数据可视化及预处理方面的优势。

@(131 - Machine Learning | 机器学习)

PCA是一种特征选择方法,可将一组相关变量转变成一组基础正交变量

25 PCA的回顾和定义
1143923-20180718190854177-562924424.png

Demo:
when to use PCA

  1. latent features driving the patterns in the data (demo find the big shots in enron)
    访问隐藏的特征

  2. dimensionality reduction
    1)visualize high dimensional data 可视化高维数据
    如何在只有两个维度的情况下,表示出多维特征
    2)reduce noise(只关注主成分)
    3)pre-processing before using another algorithm(eigenfaces特征脸)
    1。 anran
    2。 人脸识别

PCA for facial recognition—— 动手做

为什么PCA在人脸识别中有不错的应用呢?
□ 人脸照片通常有很高的输入维度(很多像素)
□ 人脸具有一些一般性形态,这些形态可以以较小维数的方式捕捉,比如人一般都有两只眼睛,眼睛基本都位于接近脸的顶部的位置

转载于:https://www.cnblogs.com/Neo007/p/9331104.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值