223. Rectangle Area

本文介绍了一个简单的算法问题,即计算两个直角矩形在二维平面上覆盖的总面积。通过判断矩形是否相交来减去重叠部分的面积,提供了一种高效的方法来解决此问题。代码使用Java实现,时间复杂度为O(1),空间复杂度也为O(1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

Find the total area covered by two rectilinear rectangles in a 2D plane.

Each rectangle is defined by its bottom left corner and top right corner as shown in the figure.

Rectangle Area

Assume that the total area is never beyond the maximum possible value of int.

链接: http://leetcode.com/problems/rectangle-area/

题解:

数学题,需要判断矩阵是否相交,相交的话减去重复面积(顶点相交除外)。

Time Complexity - O(1), Space Complexity - O(1)。

public class Solution {
    public int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) {
        int area = (C - A) * (D - B) + (G - E) * (H - F);
        if(A >= G || B >= H || C <= E || D <= F)
            return area;
        
        int duplicate = (Math.min(C, G) - Math.max(A, E)) * (Math.min(D, H) - Math.max(B, F));
        return area - duplicate;
    }
}

 

二刷:

方法跟一刷一样

Java:

Time Complexity - O(1), Space Complexity - O(1)。

public class Solution {
    public int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) {
        int totalArea = (C - A) * (D - B) + (G - E) * (H - F);
        if (A >= G || B >= H || C <= E || D <= F) {
            return totalArea;
        }
        int sameArea = (Math.min(C, G) - Math.max(A, E)) * (Math.min(D, H) - Math.max(B, F));
        return totalArea - sameArea;
    }
}

 

三刷:

Java:

  1. 一开始先计算出两个矩形的面积和 totalArea
  2. 判断两个矩形是否相交,假如不相交,或者仅有顶点相交,那么我们直接返回totalArea。 这里两个矩形 x 的范围是 (A, C), (E, F),  y的范围是(B, D), (E, F)
  3. 计算overlap的面积,边的计算公式是 ( 最小的上方或者右方点 -  最大的下方或者左方点), 相乘就是overlap的面积
  4. 相减得到结果
public class Solution {
    public int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) {
        int totalArea = (C - A) * (D - B) + (G - E) * (H - F);
        if (A >= G || C <= E || B >= H || D <= F) {
            return totalArea;
        }
        int overlap = (Math.min(C, G) - Math.max(A, E)) * (Math.min(D, H) - Math.max(B, F));
        return totalArea - overlap;
    }
}

 

 

 

 

Reference:

https://leetcode.com/discuss/39188/an-easy-to-understand-solution-in-java

https://leetcode.com/discuss/39398/my-java-solution-sum-of-areas-overlapped-area

https://leetcode.com/discuss/43549/just-another-short-way

https://leetcode.com/discuss/43173/if-you-want-to-laugh-look-at-my-solution

https://leetcode.com/discuss/54138/python-concise-solution

https://leetcode.com/discuss/51354/an-explanation-in-plain-language

http://www.cnblogs.com/0001/archive/2010/05/04/1726905.html

http://www.geeksforgeeks.org/find-two-rectangles-overlap/

https://www.cs.princeton.edu/~rs/AlgsDS07/17GeometricSearch.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值