[BZOJ3224]普通平衡树

Problem

有以下操作

  1. 插入x数
  2. 删除x数(若有多个相同的数,因只删除一个)
  3. 查询x数的排名(若有多个相同的数,因输出最小的排名)
  4. 查询排名为x的数
  5. 求x的前驱(前驱定义为小于x,且最大的数)
  6. 求x的后继(后继定义为大于x,且最小的数)

Solution

裸的Splay:
Rotate旋转操作
Splay伸展操作

Notice

注意,删除的时候不是把这个元素都删除,而是删除一个!!!

Code

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 100000;
const double eps = 1e-6, phi = acos(-1);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int point = 0, root, pre, suf, ans;
struct node
{
    int val[N + 5], count[N + 5], num[N + 5], son[2][N + 5], parent[N + 5];
    inline void up(int u)
    {
        count[u] = count[son[0][u]] + count[son[1][u]] + num[u];
    }
    
    void Rotate(int x, int &rt)
    {
        int y = parent[x], z = parent[y];
        int l = (son[1][y] == x), r = 1 - l;
        if (y == rt) rt = x;
        else if (son[0][z] == y) son[0][z] = x;
        else son[1][z] = x;
        parent[x] = z;
        parent[son[r][x]] = y, son[l][y] = son[r][x];
        parent[y] = x, son[r][x] = y;
        up(y);
        up(x);
    }
    
    void Splay(int x, int &rt)
    {
        while (x != rt)
        {
            int y = parent[x], z = parent[y];
            if (y != rt)
            {
                if ((son[0][z] == y) ^ (son[0][y] == x))
                    Rotate(x, rt);
                else Rotate(y, rt);
            }
            Rotate(x, rt);
        }
    }
    
    void Insert(int &u, int x, int last)
    {
        if (u == 0)
        {
            u = ++point;
            val[u] = x, parent[u] = last, num[u] = count[u] = 1;
            Splay(u, root);
        }
        else
        {
            if (x > val[u]) Insert(son[1][u], x, u);
            else if (x < val[u]) Insert(son[0][u], x, u);
            else if (x == val[u]) num[u]++, count[u]++, Splay(u, root);
        }
    }
    
    void Delete(int x)
    {
        Splay(x, root);
        if (num[x] > 1) 
        {
            num[x]--, count[x]--;
            return;
        }
        if (son[0][x] * son[1][x] == 0) root = son[0][x] + son[1][x];
        else 
        {
            int t = son[1][x];
            while (son[0][t] != 0) t = son[0][t];
            Splay(t, root);
            son[0][t] = son[0][x], parent[son[0][x]] = t;
            up(t);
        }
        parent[root] = 0;
    }
    
    void Find_pre(int u, int x)
    {
        if (u == 0) return;
        if (x > val[u])
        {
            pre = u;
            Find_pre(son[1][u], x);
            ans += count[son[0][u]] + num[u];
        }
        else Find_pre(son[0][u], x);
    }
    
    void Find_suf(int u,int x)
    {
        if (u == 0) return;
        if (x < val[u])
        {
            suf = u;
            Find_suf(son[0][u], x);
        }
        else Find_suf(son[1][u], x);
    }
    
    int Find_num(int u, int x)
    {
        if (x <= count[son[0][u]]) return Find_num(son[0][u], x);
        if (x > count[son[0][u]] + num[u]) return Find_num(son[1][u], x - count[son[0][u]] - num[u]);
        return val[u];
    }
    
    int Find_rank(int x)
    {
        ans = 0;
        Find_pre(root, x);
        return ans + 1;
    }
    
    int Find_id(int u, int x)
    {
        if (x == val[u]) return u;
        if (x > val[u]) return Find_id(son[1][u], x);
        if (x < val[u]) return Find_id(son[0][u], x);
    }
}splay_tree;
int sqz()
{
    int n = read();
    root = 0;
    rep(i, 1, n)
    {
        int op = read(), t = read();
        switch (op)
        {
            case 1:
            {
                splay_tree.Insert(root, t, 0);
                break;
            }
            case 2:
            {
                int x = splay_tree.Find_id(root, t);
                splay_tree.Delete(x);
                break;
            }
            case 3:
            {
                printf("%d\n", splay_tree.Find_rank(t));
                break;
            }
            case 4:
            {
                printf("%d\n", splay_tree.Find_num(root, t));
                break;
            }
            case 5:
            {
                splay_tree.Find_pre(root, t);
                printf("%d\n", splay_tree.val[pre]);
                break;
            }
            case 6:
            {
                splay_tree.Find_suf(root, t);
                printf("%d\n", splay_tree.val[suf]);
                break;
            }
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/WizardCowboy/p/7612668.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值