简单介绍:
此模块主要为了解决PYTHON非真正多线程导致无法充分利用多核CPU资源问题,提供了Process,Lock,Semaphore,Event,Queue,Pipe,Pool等组件实现子进程,通信,共享数据,同步方式等
快速安装:
pip install multiprocessing
公共属性:
multiprocessing.current_process() -> Process
说明: 返回当前运行的子进程对象
multiprocessing.cpu_count() -> int
说明: 返回宿主机CPU核心数
multiprocessing.active_children() -> list
说明: 返回存活的子进程列表
多线程类:
1. Process类,主要用于创建管理子进程
p = multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}) -> Process
说明: 创建子进程对象,target表示调用对象,name表示子进程名称,args表示调用对象的位置参数元组,kwargs表示调用对象的参数字典
p.daemon -> boolean
说明: 设置或返回子进程是否随主进程结束,默认为false,主进程必须等待所有子进程结束后才结束,一旦设置为true,则一旦主进程执行完毕后,即使子进程还没执行完毕也强制结束,必须在start之前设置,可设置p.join来强制主进程等待子进程执行完毕
p.join(timeout=None)
说明: 等待此子进程返回后再执行其它子进程/主进程,timeout为等待时间
p.pid -> int/None
说明: 返回子进程pid
p.exitcode -> int/None
说明: 运行时为None,-N表示信号N结束
p.is_alive() -> boolean
说明: 返回进程是否存活
p.start() -> None
说明: 启动子进程,会自动调用子类中的run方法
p.terminate() -> None
说明: 终止子进程
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
#
# Authors: limanman
# OsChina: http://xmdevops.blog.51cto.com/
# Purpose:
#
"""
# 说明: 导入公共模块
import time
import multiprocessing
# 说明: 导入其它模块
# 方式一: 任务处理类
class TaskHandler(multiprocessing.Process):
def __init__(self, interval, *args, **kwargs):
super(TaskHandler, self).__init__(*args, **kwargs)
self.interval = interval
# 调用p.start()时自动调用子类run方法
def run(self):
for _ in xrange(10):
time.sleep(self.interval)
# 方式二: 任务处理函数
def taskhandler(interval):
for _ in xrange(10):
time.sleep(interval)
if __name__ == '__main__':
processes = []
for _ in xrange(5):
processes.append(TaskHandler(1))
for p in processes:
p.start()
print 'cpu number is:', multiprocessing.cpu_count()
for p in multiprocessing.active_children():
print 'process pid:', p.pid
print 'process name:', p.name
time.sleep(10)
print '-----------------------------------------'
processes = []
for _ in xrange(5):
processes.append(multiprocessing.Process(target=taskhandler, args=(1,)))
for p in processes:
p.daemon = True
p.start()
p.join()
# 思考: 此处为何没有打印任何子进程信息?
for p in multiprocessing.active_children():
print 'process pid:', p.pid
print 'process name:', p.name
2. Lock类,主要用于多个进程互斥访问共享资源,避免冲突
l = multiprocessing.Lock() -> Lock
说明: 创建互斥锁对象,推荐使用with写法来代替acquire()和release()来手动创建释放锁.
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
#
# Authors: limanman
# OsChina: http://xmdevops.blog.51cto.com/
# Purpose:
#
"""
# 说明: 导入公共模块
import os
import time
import multiprocessing
# 说明: 导入其它模块
class TaskHandler(multiprocessing.Process):
def __init__(self, lock, fpath, *args, **kwargs):
super(TaskHandler, self).__init__(*args, **kwargs)
self.lock = lock
self.fpath = fpath
def run(self):
with self.lock:
with open(self.fpath, 'a+b') as f:
data = ''.join([str(time.time()), os.linesep])
f.write(data)
if __name__ == '__main__':
proceses = []
lock = multiprocessing.Lock()
fpath = 'multiprocessing.log'
for _ in xrange(10):
proceses.append(TaskHandler(lock, fpath))
for p in proceses:
p.start()
3. Semaphore类,主要用于控制同时对共享资源访问子进程数,如池的最大连接数限定
s = multiprocessing.Semaphore(value=1) -> Semaphore
说明: 创建信号量对象,value表示同时对共享资源访问的子进程数
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
#
# Authors: limanman
# OsChina: http://xmdevops.blog.51cto.com/
# Purpose:
#
"""
# 说明: 导入公共模块
import os
import time
import multiprocessing
# 说明: 导入其它模块
class TaskHandler(multiprocessing.Process):
def __init__(self, s, *args, **kwargs):
super(TaskHandler, self).__init__(*args, **kwargs)
self.semaphore = s
def run(self):
# 限制同时只能有5个子进程访问共享资源
with self.semaphore:
time.sleep(5)
if __name__ == '__main__':
s = multiprocessing.Semaphore(5)
for _ in xrange(20):
p = TaskHandler(s)
p.daemon = True
p.start()
while True:
processes = multiprocessing.active_children()
if not len(processes):
break
print 'running process => num: %s list: %s' % (len(processes), processes)
time.sleep(1)
4. Event类,主要用于控制进程间同步通信
e = multiprocessing.Event() -> Event
说明: 创建信号对象,主要用于子进程之间同步通信
e.set() -> None
说明: 设置标志位
e.clear() -> None
说明: 清除标志位
e.is_set() -> boolean
说明: 判断是否设置了标志位
e.wait(self, timeout=None) -> None
说明: 阻塞当前子进程直到标志位被设置
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
#
# Authors: limanman
# OsChina: http://xmdevops.blog.51cto.com/
# Purpose:
#
"""
# 说明: 导入公共模块
import os
import time
import multiprocessing
# 说明: 导入其它模块
def task001(e):
for _ in xrange(0, 100):
print _
e.set()
def task002(e):
e.wait()
print 'found notice: event is set...'
for _ in xrange(100, 200):
print _
if __name__ == '__main__':
e = multiprocessing.Event()
p001 = multiprocessing.Process(target=task001, args=(e,))
p002 = multiprocessing.Process(target=task002, args=(e,))
p001.start()
p002.start()
说明: 通过Evant类可以实现很方便的实现子进程与子进程,子进程与主进程之间的通信,甚至可以将所有子进程daemon设置为True,最后e.wait()阻塞,子进程中去设置此标识位来控制主进程的执行流程.
5. Pipe类,主要用于两个子进程之间的数据传递
p = multiprocessing.Pipe(duplex=True) -> tuple
说明: 创建通道对象,主要用于两个子进程之间的数据传递,返回管道的两个端对象1/2,如果duplex为true则全双工可以互相收发,否则1端只能接受消息,2端只能发送消息
p[0/1].send(picklable) -> None
说明: 发送数据支持任意可序列化对象
p[0/1].recv() -> picklable
说明: 如果没有消息可接收,recv会一直阻塞直至管道被关闭抛出EOFError异常
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
#
# Authors: limanman
# OsChina: http://xmdevops.blog.51cto.com/
# Purpose:
#
"""
# 说明: 导入公共模块
import time
import multiprocessing
from Queue import Empty, Full
# 说明: 导入其它模块
def producer(pipe):
while True:
data = {
'thread': multiprocessing.current_process().name,
'value': time.time()
}
try:
pipe.send(data)
except EOFError, e:
break
time.sleep(1)
def consumer(pipe):
while True:
try:
print 'producer: %(thread)s current value: %(value)s' % pipe.recv()
except EOFError, e:
break
time.sleep(1)
if __name__ == '__main__':
# 半双工模式下pipe[0]负责接收消息,pipe[1]负责发送消息
pipe = multiprocessing.Pipe(duplex=False)
p = multiprocessing.Process(target=producer, args=(pipe[1],))
c = multiprocessing.Process(target=consumer, args=(pipe[0],))
p.start()
c.start()
6. Queue类,主要用于多个子进程之间的数据传递
q = multiprocessing.Queue(maxsize=0) -> Queue
说明: 创建队列对象,主要用于多个进程之间的数据传递
q.full() -> boolean
说明: 判断队列是否已满
q.close() -> None
说明: 关闭队列
q.empty() -> boolean
说明: 判断队列是否已空
q.put(obj, block=True, timeout=None) -> None
说明: 插入队列,block为False会立即抛出Queue.Full异常,否则会阻塞timeout时间,直到队列有剩余的空间,如果超时会抛出Queue.Full异常,还有一个同类方法q.put_nowait(obj)非阻塞插入立即抛Queue.Full异常
q.get(block=True, timeout=None) -> None
说明: 取出队列,block为false会立即抛出Queue.Empty异常,否则会阻塞timeout时间,直到队列有新对象插入,如果超时会抛出Queue.Empty异常,还有一个同类方法q.get_nowait()非阻塞读取立抛Queue.Empty异常
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
#
# Authors: limanman
# OsChina: http://xmdevops.blog.51cto.com/
# Purpose:
#
"""
# 说明: 导入公共模块
import time
import multiprocessing
from Queue import Empty, Full
# 说明: 导入其它模块
def producer(q):
while True:
data = {
'thread': multiprocessing.current_process().name,
'value': time.time()
}
try:
q.put(data, block=False)
except Full, e:
continue
time.sleep(1)
def consumer(q):
while True:
try:
print 'producer: %(thread)s current value: %(value)s' % q.get(block=False)
except Empty, e:
continue
time.sleep(1)
if __name__ == '__main__':
q = multiprocessing.Queue()
p = multiprocessing.Process(target=producer, args=(q,))
c = multiprocessing.Process(target=consumer, args=(q,))
p.start()
c.start()
7. Pool类,主要用于以进程池的形式自动管控进程池内子进程数目
p = multiprocessing.Pool(processes=None, initializer=None, initargs=(), maxtasksperchild=None) -> Pool
说明: 创建包含规定数目子进程池对象,并向这些工作进程传递作业,直到没有更多作业为止,processes表示初始化状态下的子进程数,maxtasksperchild表示为每个进程执行N个作业数后重新启动一个工作子进程防止运行时间过长导致消耗太多系统资源.
p.close() -> None
说明: 禁止新的子进程加入,所以必须放在p.join()前面
p.join() -> None
说明: 主进程阻塞等待子进程退出,必须出现在p.close()和p.terminate() 的后面
p.terminate() -> None
说明: 结束工作进程,不再处理未处理的任务.
p.apply(self, func, args=(), kwds={}) -> obj
说明: 同内置函数apply,默认等待进程池中子进程返回结果
p.apply_async(self, func, args=(), kwds={}, callback=None) -> ApplyResult
说明: 同内置函数apply,默认不等待子进程返回结果直接返回,结果使用返回对象get()方法回调获取
p.map(self, func, iterable, chunksize=None) -> list
p.map_async(self, func, iterable, chunksize=None, callback=None) -> MapResult
说明: 同上,但是支持接受iterable序列化对象,简化进程池调用,而且速度更快,推荐使用,结果使用返回对象get()方法回调获取
p.imap(self, func, iterable, chunksize=None) -> IMapIterator
p.imap_unordered(self, func, iterable, chunksize=1) -> IMapUnorderedIterator
说明: 同上,但是imap返回的是序列对象,而imap_unordered返回的是未排序的结果,也就是按照原始执行顺序返回
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
#
# Authors: limanman
# OsChina: http://xmdevops.blog.51cto.com/
# Purpose:
#
"""
# 说明: 导入公共模块
import os
import pprint
import multiprocessing
# 说明: 导入其它模块
def read_filelist(p):
result = []
if not os.path.isdir(p):
result.append(p)
return result
for root, dirs, files in os.walk(p):
for item in files:
fpath = os.path.join(root, item)
result.append(fpath)
return result
def read_filesize(f):
return os.path.getsize(f), f
if __name__ == '__main__':
file_list = read_filelist('C:\Users\Administrator\Desktop')
pool = multiprocessing.Pool(20)
file_size = pool.map_async(read_filesize, file_list)
pool.close()
pool.join()
pprint.pprint(file_size.get())
说明: 如上例子先获取文件列表,然后通过异步回调获取所有文件大小,相对于使用apply或是apply_async需要每次append到一个列表中,此方法更加简化了多进程池的使用.推荐使用
转载于:https://blog.51cto.com/xmdevops/1861632