(区间dp + 记忆化搜索)Treats for the Cows (POJ 3186)

最优买卖策略
本文介绍了一种通过双向队列实现的最大收益买卖策略问题。利用记忆化搜索的方法,从内部向外部逆推区间,解决了如何在一系列商品中通过最优的销售顺序获得最大收益的问题。
 

Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. 

The treats are interesting for many reasons:
  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? 

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

Input

Line 1: A single integer, N 

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

5
1
3
1
5
2

Sample Output

43

Hint

Explanation of the sample: 

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2). 

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
 
 
 
题目大意:
    给出的一系列的数字,可以看成一个双向队列,每次只能从队首或者队尾出队,第n个出队就拿这个数乘以n,最后将和加起来,求最大和

思路:从外向里推,并不是很好推, 于是应该从里向外逆推区间,这样就简单多了
 
记忆化搜索:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <queue>
using namespace std;
typedef long long LL;
#define N 2005
#define met(a,b) (memset(a,b,sizeof(a)))

int a[N], dp[N][N], n;

int DFS(int L, int R, int k)
{
    if(L>R || L<1 || R<1 || R>n || L>n) return -1;

    if(dp[L][R]!=-1)
        return dp[L][R];

    dp[L][R] = 0;
    dp[L][R] = max(DFS(L+1, R, k+1) + a[L]*k, DFS(L, R-1, k+1) + a[R]*k);

    return dp[L][R];
}

int main()
{

    while(scanf("%d", &n)!=EOF)
    {
        int i;

        met(dp, -1);
        met(a, 0);

        for(i=1; i<=n; i++)
            scanf("%d", &a[i]);

        for(i=1; i<=n; i++)
            dp[i][i] = a[i]*n;

        dp[1][n] = DFS(1, n, 1);

        printf("%d\n", dp[1][n]);
    }
    return 0;
}

 

 

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <queue>
using namespace std;
typedef long long LL;
#define N 2005
#define met(a,b) (memset(a,b,sizeof(a)))

int a[N], dp[N][N], n;

int main()
{

    while(scanf("%d", &n)!=EOF)
    {
        int i, j, l;

        met(dp, 0);
        met(a, 0);

        for(i=1; i<=n; i++)
            scanf("%d", &a[i]);

        for(i=1; i<=n; i++)
            dp[i][i] = a[i]*n;

        for(l=1; l<n; l++)
        {
            for(i=1; i+l<=n; i++)
            {
                j = i+l;
                dp[i][j] = max(dp[i+1][j]+a[i]*(n-l), dp[i][j-1]+a[j]*(n-l));
            }
        }

        printf("%d\n", dp[1][n]);
    }
    return 0;
}

 

 

 

转载于:https://www.cnblogs.com/YY56/p/5469030.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值