洛谷——P1405 苦恼的小明

P1405 苦恼的小明

题目描述

黄小明和他的合伙人想要创办一所英语培训机构,注册的时候要填一张个人情况的表格,在身高一栏小明犯了愁。

身高要求精确到厘米,但小明实在太高了,无法在纸上填下这么长的数字。小明花钱买通了办事人员,于是只要写上他的身高模10007的结果就行了。

可小明不会取模,想起前几天请你帮他解决了水库的问题,于是又来找你帮忙。

输入输出格式

输入格式:

 

输入:(hehe.in)

小明的身高用A1^A2^...^An表示,第一行输入n,第二行输入n个正整数表示A1至An。

 

输出格式:

 

输出:(hehe.out)

一个数字表示小明身高mod 10007的值。

数据范围:

所有的0<=Ai<10000

第1~6数据点满足n=2

第7~10数据点满足n=3

第11个数据点满足n=1234567

(前六个数据会逐渐变大,照顾一下取模没弄清楚的同学。另外没有必要尝试对a1进行0或1的判断来骗分,估计是骗不到的。当然了,如果自认为运气好的人可以试试看,我

 

输入输出样例

输入样例#1:  复制
2										
17 747
输出样例#1:  复制
173

说明

数据范围:

所有的0<=Ai<10000

第1~6数据点满足n=2

第7~10数据点满足n=3

第11个数据点满足n=1234567

(前六个数据会逐渐变大,照顾一下取模没弄清楚的同学。另外没有必要尝试对a1进行0或1的判断来骗分,估计是骗不到的。当然了,如果自认为运气好的人可以试试看,我也阻止不了你。)

 

 

(a^b)mod m=(a^(b%phi(m)))mod m

54分

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 1300000
#define mod 10007
using namespace std;
int n,m,a[N],ans;
int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int phi(int x)
{
    int sum=x;
    if(x%2==0)
    {
        while(x%2==0) x/=2;
        sum/=2;
    }
    for(int i=3;i*i<=x;i++)
     if(x%i==0)
     {
         while(x%i==0) x/=i;
         sum=sum/i*(i-1);
     }
    if(x) sum=sum/x*(x-1);
    return sum;
}
int qpow(int a,int b,int p)
{
    int res=1;
    while(b)
    {
        if(b&1) res=1ll*res*a%p;
        a=1ll*a*a%p,b>>=1;
    }return res;
}
int main()
{
    n=read();m=phi(mod);
    for(int i=1;i<=n;i++)
     a[i]=read();ans=a[1];
    for(int i=2;i<=n;i++)
     ans=qpow(ans,a[i]%  ,mod);
    printf("%d",ans);
    return 0;
}
54分
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std;
const int pp=10007;
const int NN=10010;
int a[2000000];
int phi[NN],vis[NN],prime[NN];
int ans,tot,n;
int gphi(){//这是个欧拉函数 
    phi[1]=1;
    for(int i=2;i<=NN;i++){
        if(!vis[i]){
            prime[++tot]=i;
            phi[i]=i-1;
        }
        for(int j=1;j<=tot;j++){
            if(i*prime[j]>NN)break;
            vis[i*prime[j]]=1;
            if(i%prime[j]==0){
                phi[i*prime[j]]=phi[i]*prime[j];
            }
            else{
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
}
int qpow(int a,int k,int p){//quick pow 水 
    if(k==0)return 1;
    int t=qpow(a,k/2,p)%p;
    t=(t*t)%p;
    if(k&1)t=(t*a)%p;
    return t;
}
int modex(int k,int x){//a^b mod m=a^(b mod phi(m)) mod m  
    if(x==n)return a[x]%k;
    int kt=modex(phi[k],x+1);
    int tt=qpow(a[x],kt,k);
    //cout<<a[x]<<' '<<kt<<' '<<k<<' '<<tt<<endl;
    return tt;
}
int main(){
    gphi();
    scanf("%d",&n);
    for(int i=1;i<=n;i++)scanf("%d",&a[i]);
    ans=modex(pp,1);
    printf("%d",ans);//好神奇竟然过了
    return 0;
}

 

转载于:https://www.cnblogs.com/z360/p/7875503.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值