题目:
0,1,...n-1这n个数字排成一个圆圈,从数字0开始每次从这个圆圈里删除第m个数字,求出这个圆圈里剩下的最后一个数字。
思路:
1、环形链表模拟圆圈
创建一个n个节点的环形链表,然后每次在这个链表中删除第m个节点;
可以用std::list来模拟环形链表,list本身不是环形结构,因此每当迭代器扫描到链表末尾的时候,需要将迭代器移到链表的头部。
2、分析每次被删除的数字的规律,动态规划
假设从0-n-1中删除了第m个数字,则下一轮的数字排列为m,m+1,.....n,1,2,3...m-2,将该数字排列重新映射为0~n-2,则为
m 0
m+1 1
.... ....
n-1 n-1-m
0 n-m
1 n-m+1
... ....
m-2 n-2
可以看出从右往左的映射关系为left=(right+m)%n,即0~n-1序列中最后剩下的数字等于(0~n-2序列中最后剩下的数字+m)%n,很明显当n=1时,只有一个数,那么剩下的数字就是0.
问题转化为动态规划问题,关系表示为:
f(n)=(f(n-1)+m)%n; 当n=1,f(1)=0;
代码:
1、环形链表
#include <iostream>
#include <list>
using namespace std;
int lastRemaining(unsigned int n,unsigned int m){
if(n<1 || m<1)
return -1;
std::list<int> numbers;
for(unsigned int i=0;i<n;i++)
numbers.push_back(i);
std::list<int>::iterator current=numbers.begin();
std::list<int>::iterator next;
while(numbers.size()>1){
for(unsigned int i=1;i<m;i++){
current++;
if(current==numbers.end())
current=numbers.begin();
}
next=++current;
if(next==numbers.end())
next=numbers.begin();
--current;
numbers.erase(current);
current=next;
}
return *(current);
}
int main()
{
cout << lastRemaining(5,3) << endl;
return 0;
}
2、映射规律,动态规划
int lastRemaining_1(unsigned int n,unsigned int m){
if(n<1 || m<1)
return -1;
int last=0;
for(int i=2;i<=n;i++){
last=(last+m)%i;
}
return last;
}
int lastRemaining_2(unsigned int n,unsigned int m){
if(n<1 || m<1)
return -1;
if(n==1)
return 0;
return (lastRemaining_2(n-1,m)+m)%n;
}
在线测试OJ:
http://www.nowcoder.com/books/coding-interviews/f78a359491e64a50bce2d89cff857eb6?rp=2
AC代码:
1、环形链表
class Solution {
public:
int LastRemaining_Solution(unsigned int n, unsigned int m)
{
if(n<1 || m<1)
return -1;
std::list<int> numbers;
for(unsigned int i=0;i<n;i++)
numbers.push_back(i);
std::list<int>::iterator current=numbers.begin();
std::list<int>::iterator next;
while(numbers.size()>1){
for(unsigned int i=1;i<m;i++){
++current;
if(current==numbers.end())
current=numbers.begin();
}
next=++current;
if(next==numbers.end())
next=numbers.begin();
--current;
numbers.erase(current);
current=next;
}
return *current;
}
};
2、序列规律,动态规划
class Solution {
public:
int LastRemaining_Solution(unsigned int n, unsigned int m)
{
if(n<1 || m<1)
return -1;
int last=0;
for(int i=2;i<=n;i++)
last=(last+m)%i;
return last;
}
};
class Solution {
public:
int LastRemaining_Solution(unsigned int n, unsigned int m)
{
if(n<1 || m<1)
return -1;
if(n==1)
return 0;
return (LastRemaining_Solution(n-1,m)+m)%n;
}
};