[Algorithms] Longest Common Subsequence

本文深入探讨了最长公共子序列(LCS)问题,并提供了多种优化后的算法实现,包括时间复杂度和空间复杂度的改进。通过实例演示了如何在不同场景下应用LCS算法,同时附上了UVa在线评测平台的实践指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Longest Common Subsequence (LCS) problem is as follows:

Given two sequences s and t, find the length of the longest sequence r, which is a subsequence of both s and t.

Do you know the difference between substring and subequence? Well, substring is a contiguous series of characters while subsequence is not necessarily. For example, "abc" is a both a substring and a subseqeunce of "abcde" while "ade" is only a subsequence.

This problem is a classic application of Dynamic Programming. Let's define the sub-problem (state) P[i][j] to be the length of the longest subsequence ends at i of s and j of t. Then the state equations are

  1. P[i][j] = max(P[i][j - 1], P[i - 1][j]) if s[i] != t[j];
  2. P[i][j] = P[i - 1][j - 1] + 1 if s[i] == t[j].

This algorithm gives the length of the longest common subsequence.  The code is as follows.

1 int longestCommonSubsequence(string s, string t) {
2     int m = s.length(), n = t.length();
3     vector<vector<int> > dp(m + 1, vector<int> (n + 1, 0));
4     for (int i = 1; i <= m; i++)
5         for (int j = 1; j <= n; j++)
6             dp[i][j] = (s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] + 1 : max(dp[i - 1][j], dp[i][j - 1]));
7     return dp[m][n];
8 }

Well, this code has both time and space complexity of O(m*n). Note that when we update dp[i][j], we only need dp[i - 1][j - 1], dp[i - 1][j] and dp[i][j - 1]. So we simply need to maintain two columns for them. The code is as follows.

 1 int longestCommonSubsequenceSpaceEfficient(string s, string t) {
 2     int m = s.length(), n = t.length();
 3     int maxlen = 0;
 4     vector<int> pre(m, 0);
 5     vector<int> cur(m, 0);
 6     pre[0] = (s[0] == t[0]);
 7     maxlen = max(maxlen, pre[0]);
 8     for (int i = 1; i < m; i++) {
 9         if (s[i] == t[0] || pre[i - 1] == 1) pre[i] = 1;
10         maxlen = max(maxlen, pre[i]);
11     }
12     for (int j = 1; j < n; j++) {
13         if (s[0] == t[j] || pre[0] == 1) cur[0] = 1;
14         maxlen = max(maxlen, cur[0]);
15         for (int i = 1; i < m; i++) {
16             if (s[i] == t[j]) cur[i] = pre[i - 1] + 1;
17             else cur[i] = max(cur[i - 1], pre[i]);
18             maxlen = max(maxlen, cur[i]);
19         }
20         swap(pre, cur);
21         fill(cur.begin(), cur.end(), 0);
22     }
23     return maxlen;
24 }

Well, keeping two columns is just for retriving pre[i - 1], we can maintain a single variable for it and keep only one column. The code becomes more efficient and also shorter. However, you may need to run some examples to see how it achieves the things done by the two-column version.

 1 int longestCommonSubsequenceSpaceMoreEfficient(string s, string t) {
 2     int m = s.length(), n = t.length();
 3     vector<int> cur(m + 1, 0);
 4     for (int j = 1; j <= n; j++) {
 5         int pre = 0;
 6         for (int i = 1; i <= m; i++) {
 7             int temp = cur[i];
 8             cur[i] = (s[i - 1] == t[j - 1] ? pre + 1 : max(cur[i], cur[i - 1]));
 9             pre = temp;
10         }
11     }
12     return cur[m];
13 }

Now you may try this problem on UVa Online Judge and get Accepted:)

Of course, the above code only returns the length of the longest common subsequence. If you want to print the lcs itself, you need to visit the 2-d table from bottom-right to top-left. The detailed algorithm is clearly explained here. The code is as follows.

 1 int longestCommonSubsequence(string s, string t) {
 2     int m = s.length(), n = t.length();
 3     vector<vector<int> > dp(m + 1, vector<int> (n + 1, 0));
 4     for (int i = 1; i <= m; i++)
 5         for (int j = 1; j <= n; j++)
 6             dp[i][j] = (s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] + 1 : max(dp[i - 1][j], dp[i][j - 1]));
 7     int len = dp[m][n];
 8     // Print out the longest common subsequence
 9     string lcs(len, ' ');
10     for (int i = m, j = n, index = len - 1; i > 0 && j > 0;) {
11         if (s[i - 1] == t[j - 1]) {
12             lcs[index--] = s[i - 1];
13             i--;
14             j--;
15         }
16         else if (dp[i - 1][j] > dp[i][j - 1]) i--;
17         else j--;
18     }
19     printf("%s\n", lcs.c_str());
20     return len;
21 }

 

转载于:https://www.cnblogs.com/jcliBlogger/p/4574334.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值