[Algorithms] Longest Common Substring

本文介绍了一种利用动态规划求解两个字符串中最长公共子串的经典算法,并提供了两种实现方式:一种是空间复杂度为O(m*n),另一种通过优化达到了O(m)的空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Longest Common Substring (LCS) problem is as follows:

Given two strings s and t, find the length of the longest string r, which is a substring of both s and t.

This problem is a classic application of Dynamic Programming. Let's define the sub-problem (state) P[i][j] to be the length of the longest substring ends at i of s and j of t. Then the state equations are

  1. P[i][j] = 0 if s[i] != t[j];
  2. P[i][j] = P[i - 1][j - 1] + 1 if s[i] == t[j].

This algorithm gives the length of the longest common substring. If we want the substring itself, we simply find the largest P[i][j] and return s.substr(i - P[i][j] + 1, P[i][j]) or t.substr(j - P[i][j] + 1, P[i][j]).

Then we have the following code.

 1 string longestCommonSubstring(string s, string t) {
 2     int m = s.length(), n = t.length();
 3     vector<vector<int> > dp(m, vector<int> (n, 0));
 4     int start = 0, len = 0;
 5     for (int i = 0; i < m; i++) {
 6         for (int j = 0; j < n; j++) {
 7             if (i == 0 || j == 0) dp[i][j] = (s[i] == t[j]);
 8             else dp[i][j] = (s[i] == t[j] ? dp[i - 1][j - 1] + 1: 0);
 9             if (dp[i][j] > len) {
10                 len = dp[i][j];
11                 start = i - len + 1;
12             }
13         }
14     }
15     return s.substr(start, len);
16 }

The above code costs O(m*n) time complexity and O(m*n) space complexity. In fact, it can be optimized to O(min(m, n)) space complexity. The observations is that each time we update dp[i][j], we only need dp[i - 1][j - 1], which is simply the value of the above grid before updates.

Now we will have the following code.

 1 string longestCommonSubstringSpaceEfficient(string s, string t) {
 2     int m = s.length(), n = t.length();
 3     vector<int> cur(m, 0);
 4     int start = 0, len = 0, pre = 0;
 5     for (int j = 0; j < n; j++) {
 6         for (int i = 0; i < m; i++) {
 7             int temp = cur[i];
 8             cur[i] = (s[i] == t[j] ? pre + 1 : 0);
 9             if (cur[i] > len) {
10                 len = cur[i];
11                 start = i - len + 1;
12             }
13             pre = temp;
14         }
15     }
16     return s.substr(start, len);
17 }

In fact, the code above is of O(m) space complexity. You may choose the small size for cur and repeat the same code using if..else.. to save more spaces :)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值