[Leetcode]198. House Robber

本文探讨了一道经典的动态规划问题——如何最大化抢劫一排房屋所获得的金钱总额,同时避免触发相邻房屋的安全警报。文章给出了清晰的状态转移方程,并提供了一个C++实现示例。

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

 

思路:这题的状态转移方程还是比较好找的,然而我转换代码的能力还是太弱,或者说dp题做的还不够多,费了好多时间。。。

方程dp[i] = max{nums[i] + (i -2 < 0 ? 0 : dp[i-2]), dp[i-1]}

 1 class Solution {
 2 public:
 3     int rob(vector<int>& nums) {
 4         if (!nums.size())
 5             return 0;
 6         int dp[nums.size()]; dp[0] = nums[0];
 7         for (int i = 1; i != nums.size(); ++i)
 8             dp[i] = max(nums[i] + (i-2 < 0 ? 0 : dp[i-2]), dp[i-1]);
 9         return dp[nums.size()-1];
10     }
11 };

 

转载于:https://www.cnblogs.com/David-Lin/p/8337805.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值