对Socket CAN的理解(5)——【Socket CAN控制器的初始化过程】

本文详细介绍CAN控制器的初始化过程,包括进入初始化模式、配置位时序和消息报文等关键步骤,并提供具体的代码示例。

转载请注明出处:http://blog.youkuaiyun.com/Righthek 谢谢!


        对于一般的CAN模块,进行初始化时,最关键的是下面两步:

        1、  配置CAN的位时序;

        2、  配置CAN的消息报文;

             

        以下,我们来具体分析上面提到的关键两步。

        一、初始化步骤:

        1、  第一步,进入初始化模式。在CAN控制寄存器中,将Init位置1;

        2、  第二步,在CAN控制寄存器中,将CCE位置1;

        3、  第三步,等待Init位置1。此步聚为了确保已经进入初始化模式;

       4、  第四步。将位时序的值写入到位时序寄存器(BTR)中;

       5、  第五步,将CCE和Init位置为0;

       6、  第六步,等待清除Init位。此步聚为了确保已经退出初始化模式;

                            

        解释完CAN的初始化步骤后,我们来看看代码实现:

                 我们先初始化一个CAN的位时序常量。

        /* CAN Bittiming constants as per D_CAN specs */

        static structcan_bittiming_const d_can_bittiming_const = {

                 .name = D_CAN_DRV_NAME,

                 .tseg1_min = 1,                 /* Time segment 1 = prop_seg + phase_seg1 */

                 .tseg1_max = 16,

                 .tseg2_min = 1,                 /* Time segment 2 = phase_seg2 */

                 .tseg2_max = 8,

                 .sjw_max = 4,

                 .brp_min = 1,

                 .brp_max = 1024,    /* 6-bit BRP field + 4-bit BRPE field*/

                 .brp_inc = 1,

        };

        在打开CAN设置时,进行初始化。初始化完毕之后,恢复正常模式。使能收发I/O控制引脚。最后配置消息报文。代码例如以下:

        static void d_can_init(structnet_device *dev)

        {

                 struct d_can_priv *priv =netdev_priv(dev);

                 u32 cnt;

 

                 netdev_dbg(dev, "resetting d_can...\n");

                 d_can_set_bit(priv, D_CAN_CTL,D_CAN_CTL_SWR);

 

                 /* Enterinitialization mode by setting the Init bit */

                 d_can_set_bit(priv, D_CAN_CTL,D_CAN_CTL_INIT);

 

                 /* enableautomatic retransmission */

                 d_can_set_bit(priv, D_CAN_CTL,D_CAN_CTL_ENABLE_AR);

 

                 /* Set theConfigure Change Enable ( CCE) bit */

                 d_can_set_bit(priv, D_CAN_CTL,D_CAN_CTL_CCE);

 

                 /* Wait forthe Init bit to get set */

                 cnt = D_CAN_WAIT_COUNT;

                 while (!d_can_get_bit(priv, D_CAN_CTL,D_CAN_CTL_INIT) && cnt != 0) {

                           --cnt;

                           udelay(10);

                 }

 

                 /* setbittiming params */

                 d_can_set_bittiming(dev);

 

                 d_can_clear_bit(priv, D_CAN_CTL,D_CAN_CTL_INIT | D_CAN_CTL_CCE);

 

                 /* Wait for the Init bit to get clear*/

                 cnt = D_CAN_WAIT_COUNT;

                 while (d_can_get_bit(priv, D_CAN_CTL,D_CAN_CTL_INIT) && cnt != 0) {

                           --cnt;

                           udelay(10);

                 }

 

                 if (priv->can.ctrlmode &(CAN_CTRLMODE_LOOPBACK |

                                             CAN_CTRLMODE_LISTENONLY))

                           d_can_test_mode(dev);

                 else

                           /* normal mode*/

                           d_can_write(priv, D_CAN_CTL,D_CAN_CTL_EIE | D_CAN_CTL_IE1 |

                                                                         D_CAN_CTL_IE0);

 

                 /* Enable TXand RX I/O Control pins */

                 d_can_write(priv, D_CAN_TIOC,D_CAN_TIOC_FUNC);

                 d_can_write(priv, D_CAN_RIOC, D_CAN_RIOC_FUNC);

 

                 /* configuremessage objects */

                 d_can_configure_msg_objects(dev);

 

                 /* set a LECvalue so that we can check for updates later */

                 d_can_write(priv, D_CAN_ES,LEC_UNUSED);

        }

        运行完第一、第二步之后。设置位时序的參数。代码例如以下:

        static intd_can_set_bittiming(struct net_device *dev)

        {

                 struct d_can_priv *priv =netdev_priv(dev);

                 const struct can_bittiming *bt =&priv->can.bittiming;

                 u32 can_btc;

 

                 can_btc = ((bt->phase_seg2 - 1)& 0x7) << D_CAN_BTR_TSEG2_SHIFT;

                 can_btc |= ((bt->phase_seg1 +bt->prop_seg - 1)

                                    & 0xF) <<D_CAN_BTR_TSEG1_SHIFT;

 

                 can_btc |= ((bt->sjw - 1) & 0x3)<< D_CAN_BTR_SJW_SHIFT;

 

                 /* Ten bitscontains the BRP, 6 bits for BRP and upper 4 bits for brpe*/

                 can_btc |= ((bt->brp - 1) &0x3F) << D_CAN_BTR_BRP_SHIFT;

                 can_btc |= ((((bt->brp - 1) >>6) & 0xF) << D_CAN_BTR_BRPE_SHIFT);

 

                 d_can_write(priv, D_CAN_BTR, can_btc);

 

                 netdev_info(dev, "setting CAN BT =%#x\n", can_btc);

 

                 return 0;

        }

 

        以上内容并非Linux CAN的驱动初始化过程,仅仅是属于当中的一部分。更详细地说,是针对CAN控制器的初始化过程。


转载请注明出处: http://blog.youkuaiyun.com/Righthek  谢谢!


内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值