[再寄小读者之数学篇](2014-11-24 积分中值定理)

本文详细介绍了积分中值定理,包括积分第一中值定理、推广的积分第一中值定理、积分第二中值定理及其具体应用。讨论了函数在连续区间上的性质与积分的关系,为理解函数积分提供了深入的理论基础。

积分第一中值定理. 若 $f$ 在 $[a,b]$ 上连续, 则 $$\bex \exists\ \xi\in (a,b),\st \int_a^b f(x)\rd x=f(\xi)(b-a). \eex$$ 推广的积分第一中值定理. 若 $f,g$ 都在 $[a,b]$ 上连续, 且 $g$ 在 $[a,b]$ 上不变号, 则 $$\bex \exists\ \xi\in [a,b],\st \int_a^b f(x)g(x)\rd x =f(\xi)\int_a^b g(x)\rd x. \eex$$ 积分第二中值定理. 设 $f$ 在 $[a,b]$ 上可积.

(1). 若函数 $g$ 在 $[a,b]$ 上减, 且 $g(x)\geq 0$, 则 $$\bex \exists\ \xi\in [a,b],\st \int_a^b f(x)g(x)\rd x =g(a)\int_a^\xi f(x)\rd x. \eex$$ (2). 若函数 $g$ 在 $[a,b]$ 上增, 且 $g(x)\geq 0$, 则 $$\bex \exists\ \eta\in [a,b],\st \int_a^b f(x)g(x)\rd x =g(b)\int_\eta^b f(x)\rd x. \eex$$ (3). 若函数 $g$ 为单调函数, 则 $$\bex \exists\ \xi\in [a,b],\st \int_a^b f(x)g(x)\rd x =g(a)\int_a^\xi f(x)\rd x +g(b)\int_\xi^b f(x)\rd x. \eex$$ 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值