[再寄小读者之数学篇](2014-06-03 微分、积分中值定理的应用)

本文详细阐述了如何利用极限、积分中值定理及微分中值定理证明在给定条件下存在ξ∈(0,1),使得f''(ξ)+2ξf'(ξ)=0。通过逐步分析函数特性,最终证明了这一结论。

设 $f$ 在 $[0,1]$ 上连续, 在 $(0,1)$ 内二阶可导, 且 $$\bex \lim_{x\to 0}\cfrac{f(x)}{x^2}\mbox{ 存在,}\quad \int_0^1 f(x)\rd x=f(1). \eex$$ 证明: 存在 $\xi\in (0,1)$, 使得 $f''(\xi)+2\xi f'(\xi)=0$.   

 

证明: 由 $\dps{\lim_{x\to 0}\cfrac{f(x)}{x^2}}$ 存在知 $f(0)=0$, 而 $$\bex f'(0)=\lim_{x\to 0}\cfrac{f(x)}{x^2} \cdot x=0. \eex$$ 又由积分中值定理 (与书上的不同, 要变形, 证明利用微分中值定理), $$\bex \exists\ \eta\in (0,1),\st f(\eta)=\int_0^1 f(x)\rd x=f(1). \eex$$ 再据 Rolle 定理, $$\bex \exists\ \zeta\in(\eta,1),\st f'(\zeta)=0. \eex$$ 记 $F(x)=e^{2x}f'(x)$, 则 $$\bex F(0)=F(\zeta)=0. \eex$$ 由 Rolle 定理, $$\bex \exists\ \xi\in (0,\zeta),\st F'(\xi)=0. \eex$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值