[再寄小读者之数学篇](2014-06-18 微分、积分中值定理一起来)

本文针对一个特定的数学问题展开讨论,设$f$在$[0,1]$区间内可微,且满足特定积分条件。通过构造辅助函数$F(x)=e^xf(x)$并运用中值定理及Rolle定理,证明了存在$xiin(0,1)$,使得$f(xi)+f'(xi)=0$。

 

设 $f$ 在 $[0,1]$ 上可微, 且满足条件 $\dps{f(1)=3\int_0^{1/3} e^{x-1}f(x)\rd x}$, 证明: 存在 $\xi\in (0,1)$, 使得 $f(\xi)+f'(\xi)=0$.

 

证明: 取 $F(x)=e^xf(x)$, 则由中值定理, $$\bex \exists\ \eta\in (0,1/3),\st F(1)=ef(1)=3\int_0^{1/3}e^xf(x)\rd x=\eta f(\eta)=F(\eta). \eex$$ 再由 Rolle 定理, $$\bex \exists\ \xi\in (0,\eta)\subset (0,1),\st 0=F'(\xi)=e^\xi[f(\xi)+f'(\xi)]. \eex$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值