Parallel Decision Tree

Decision Tree such as C4.5 is easy to parallel. Following is an example.

This is a non-parallel version:

public void learnFromDataSet(Iterable<Sample<FK, FV, Boolean>> dataset){
        for(Sample sample : dataset){
            model.addSample((MapBasedBinarySample<FK, FV>)sample);
        }
        Queue<TreeNode<FK, FV>> Q = new LinkedList<TreeNode<FK, FV>>();
        TreeNode<FK, FV> root = model.selectRootTreeNode();
        model.addTreeNode(root);
        Q.add(root);
        while (!Q.isEmpty()){
            TreeNode v = Q.poll();
            if(v.getDepth() >= model.getMaxDepth()){
                continue;
            }
            FeatureSplit<FK> featureSplit = model.selectFeature(v);
            if(featureSplit.getFeatureId() == null){
                continue;
            }
            v.setFeatureSplit(featureSplit);
            Pair<TreeNode<FK,FV>, TreeNode<FK, FV>> children =
                    model.newTreeNode(v, featureSplit);
            TreeNode leftNode = children.getKey();
            TreeNode rightNode = children.getValue();
            if(leftNode != null
                    && leftNode.getSampleSize() > model.getMinSampleSizeInNode()){
                v.setLeft(leftNode);
                model.addTreeNode(leftNode);
                Q.add(leftNode);
            }
            if(rightNode != null
                    && rightNode.getSampleSize() > model.getMinSampleSizeInNode()){
                v.setRight(rightNode);
                model.addTreeNode(rightNode);
                Q.add(rightNode);
            }
        }
    }

And this is a parallel version:

public class NodeSplitThread implements Runnable{
        private TreeNode<FK, FV> node = null;
        private Queue<TreeNode<FK, FV>> Q = null;

        public NodeSplitThread(TreeNode<FK, FV> node, Queue<TreeNode<FK, FV>> Q){
            this.node = node;
            this.Q = Q;
        }
        @Override
        public void run() {
            if(node.getDepth() >= model.getMaxDepth()){
                return;
            }
            FeatureSplit<FK> featureSplit = model.selectFeature(node);
            if(featureSplit.getFeatureId() == null){
                return;
            }
            node.setFeatureSplit(featureSplit);
            Pair<TreeNode<FK,FV>, TreeNode<FK, FV>> children = model.newTreeNode(node, featureSplit);
            TreeNode<FK, FV> leftNode = children.getKey();
            TreeNode<FK, FV> rightNode = children.getValue();

            if(leftNode != null && leftNode.getSampleSize() > model.getMinSampleSizeInNode()){
                node.setLeft(leftNode);
                model.addTreeNode(leftNode);
                Q.add(leftNode);
            }
            if(rightNode != null && rightNode.getSampleSize() > model.getMinSampleSizeInNode()){
                node.setRight(rightNode);
                model.addTreeNode(rightNode);
                Q.add(rightNode);
            }
        }
    }

    public List<TreeNode<FK, FV>> pollTopN(Queue<TreeNode<FK, FV>> Q, int n){
        List<TreeNode<FK, FV>> ret = new ArrayList<TreeNode<FK, FV>>();
        for(int i = 0; i < n; ++i){
            if(Q.isEmpty()) break;
            TreeNode<FK, FV> node = Q.poll();
            ret.add(node);
        }
        return ret;
    }

    @Override
    public void learnFromDataSet(Iterable<Sample<FK, FV, Boolean>> dataset){

        for(Sample sample : dataset){
            model.addSample((MapBasedBinarySample<FK, FV>)sample);
        }
        Queue<TreeNode<FK, FV>> Q = new ConcurrentLinkedQueue<TreeNode<FK, FV>>();
        TreeNode<FK, FV> root = model.selectRootTreeNode();
        model.addTreeNode(root);
        Q.add(root);
        ExecutorService threadPool = Executors.newFixedThreadPool(10);
        while (!Q.isEmpty()){
            List<TreeNode<FK, FV>> nodes = pollTopN(Q, 10);
            List<Future> tasks = new ArrayList<Future>(nodes.size());
            for(TreeNode<FK, FV> node : nodes){
                Future task = threadPool.submit(new NodeSplitThread(node, Q));
                tasks.add(task);
            }
            for(Future task : tasks){
                try {
                    task.get();
                } catch (InterruptedException e) {
                    continue;
                } catch (ExecutionException e) {
                    continue;
                }
            }
        }
        threadPool.shutdown();
        try {
            threadPool.awaitTermination(60, TimeUnit.SECONDS);
        } catch (InterruptedException e) {
            threadPool.shutdownNow();
            Thread.interrupted();
        }
        threadPool.shutdownNow();
    }

 http://xlvector.net/blog/?p=896

转载于:https://www.cnblogs.com/549294286/p/3270000.html

内容概要:本文详细探讨了基于MATLAB/SIMULINK的多载波无线通信系统仿真及性能分析,重点研究了以OFDM为代表的多载波技术。文章首先介绍了OFDM的基本原理和系统组成,随后通过仿真平台分析了不同调制方式的抗干扰性能、信道估计算法对系统性能的影响以及同步技术的实现与分析。文中提供了详细的MATLAB代码实现,涵盖OFDM系统的基本仿真、信道估计算法比较、同步算法实现和不同调制方式的性能比较。此外,还讨论了信道特征、OFDM关键技术、信道估计、同步技术和系统级仿真架构,并提出了未来的改进方向,如深度学习增强、混合波形设计和硬件加速方案。; 适合人群:具备无线通信基础知识,尤其是对OFDM技术有一定了解的研究人员和技术人员;从事无线通信系统设计与开发的工程师;高校通信工程专业的高年级本科生和研究生。; 使用场景及目标:①理解OFDM系统的工作原理及其在多径信道环境下的性能表现;②掌握MATLAB/SIMULINK在无线通信系统仿真中的应用;③评估不同调制方式、信道估计算法和同步算法的优劣;④为实际OFDM系统的设计和优化提供理论依据和技术支持。; 其他说明:本文不仅提供了详细的理论分析,还附带了大量的MATLAB代码示例,便于读者动手实践。建议读者在学习过程中结合代码进行调试和实验,以加深对OFDM技术的理解。此外,文中还涉及了一些最新的研究方向和技术趋势,如AI增强和毫米波通信,为读者提供了更广阔的视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值