64. Minimum Path Sum

本文详细解析了在给定的m*n网格中寻找从左上角到右下角的最小路径和问题。通过动态规划的方法,阐述了如何利用状态转移方程grid[i][j]=grid[i][j]+min(grid[i-1][j],grid[i][j-1])来高效求解此问题,最终实现了4ms的运行时间,优于97.83%的Java在线提交。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

难度:medium

题目:给定m * n的格子,找出从左上角到右下角和最小的路径。

思路:动态规划,状态转移方程
grid[i][j] = grid[i][j] + min(grid[i - 1][j], grid[i][j - 1]

Runtime: 4 ms, faster than 97.83% of Java online submissions for Minimum Path Sum.
Memory Usage: 40.8 MB, less than 1.47% of Java online submissions for Minimum Path Sum.

class Solution {
    public int minPathSum(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        for (int i = 1; i < n; i++) {
            grid[0][i] += grid[0][i - 1];
        }
        for (int i = 1; i < m; i++) {
            grid[i][0] += grid[i - 1][0];
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                grid[i][j] += Math.min(grid[i - 1][j], grid[i][j - 1]);
            }
        }
        
        return grid[m - 1][n - 1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值