归并排序
1.分治法
很多算法在结构上都是递归的,为了解决一个问题,算法一次或多次递归地调用其自身已解决紧密相关的若干子问题。这就是分治法的思想。
分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
分治模式在每层递归时都有三个步骤:
- 分解原问题为若干子问题,这些子问题是原问题规模较小的实例;
- 解决这些子问题,调用上一步骤,若子问题规模足够小,直接求解即可;
- 合并这些子问题的解成原问题的解。
2.归并排序
归并算法完全遵循上述分治策略,算法流程如下:
- 分解:分解待排序的n个元素序列成各具n/2元素的两个子序列;
- 解决:使用归并排序递归地排序两个子序列;
- 合并:合并两个已排序的子序列以产生已排序的答案。
对于分治策略,有两个值得特别关注的地方:
1. 确定子问题的最小规模,即明确递归算法的终止条件。以归并排序为例,当子数组包含元素个数为1时,即停止调用函数自身 。
2. 递归“回升”的操作,当待排序的字数组包含元素为1时,在这种情况下开始合并各个子数组。
归并排序的整个流程如下图所示:
最后对算法复杂度进行评价:归并排序的算法复杂度为O(nlogn)。
3.代码实现(C/C++,Java,Python)
C
#include <stdio.h>
#include <stdlib.h>
void merge_array(int* a, int first, int mid, int last) {
int first1 = first, first2 = mid + 1;
int last1 = mid, last2 = last;
int index = 0, i;
int *tmp;
tmp = (int* )malloc((last - first + 1) * sizeof(int));
if(tmp == NULL) exit(1);
while(first1 <= last1 && first2 <= last2) {
if(a[first1] <= a[first2])
tmp[index++] = a[first1++];
else
tmp[index++] = a[first2++];
}
while(first1 <= last1)
tmp[index++] = a[first1++];
while(first2 <= last2)
tmp[index++] = a[first2++];
for( i=0; i<(last-first+1); i++)
a[first + i] = tmp[i];
free(tmp);
}
void merge_sort(int* a, int first, int last) {
int mid = 0;
if(first < last) {
mid = (first + last) / 2;
merge_sort(a, first, mid);
merge_sort(a, mid + 1, last);
merge_array(a, first, mid, last);
}
}
int main() {
int len, i;
int *a;
printf("Enter the length of array: ");
scanf("%d", &len);
a = (int *)malloc(sizeof(int) * len);
printf("Enter the element of array: ");
for(i = 0; i < len; i++)
scanf("%d", &a[i]);
merge_sort(a, 0, len-1);
for(i = 0; i < len; i++)
printf("%d ", a[i]);
free(a);
return 0;
}
C++
#include <iostream>
#include <vector>
using namespace std;
void merge_array(vector<int> &array, int first, int mid, int last) {
int first1 = first, first2 = mid + 1;
int last1 = mid, last2 = last;
vector<int> tmp;
while(first1 <= last1 && first2 <= last2) {
if(array[first1] <= array[first2])
tmp.push_back(array[first1++]);
else
tmp.push_back(array[first2++]);
}
while(first1 <= last1)
tmp.push_back(array[first1++]);
while(first2 <= last2)
tmp.push_back(array[first2++]);
for(int i = 0; i < (last - first + 1); i++)
array[first + i] = tmp[i];
}
void merge_sort(vector<int> &array, int first, int last) {
int mid = 0;
if(first < last) {
mid = (first + last) / 2;
merge_sort(array, first, mid);
merge_sort(array, mid + 1, last);
merge_array(array, first, mid, last);
}
}
void display(vector<int> &array){
for(vector<int>::iterator it = array.begin(); it < array.end(); it++)
cout << *it<< " ";
}
int main() {
vector<int> array;
int length, element;
cout << "Enter the length of array: ";
cin >> length;
cout << "Enter the element of array: ";
for(int i = 0; i < length; i++) {
cin >> element;
array.push_back(element);
}
merge_sort(array, 0, length-1);
display(array);
return 0;
}
Java
import java.util.*;
public class MergeSort{
public static void display(Iterator<Integer> it) {
while(it.hasNext()) {
Integer element = it.next();
System.out.print(element + " ");
}
}
public static void main(String[] args) {
ArrayList<Integer> array = new ArrayList<Integer>();
Scanner in = new Scanner(System.in);
System.out.print("Entrt the length of array: ");
int len = in.nextInt();
for(int i = 0; i < len; i++)
array.add(in.nextInt());
in.close();
Sort sort = new Sort(array);
sort.mergeSort(array, sort.getFirst(), sort.getLast());
display(array.iterator());
}
}
class Sort{
public Sort(ArrayList<Integer> array) {
this.array = array;
}
public int getFirst() {
return 0;
}
public int getLast() {
return array.size() - 1;
}
public void mergeSort(ArrayList<Integer> array, int first, int last) {
int mid = 0;
if(first < last) {
mid = (first + last) / 2;
mergeSort(array, first, mid);
mergeSort(array, mid + 1, last);
mergeArray(array, first, mid, last);
}
}
public void mergeArray(ArrayList<Integer> array, int first, int mid, int last) {
int first1 = first, first2 = mid + 1;
int last1 = mid, last2 = last;
ArrayList<Integer> tmp = new ArrayList<Integer>();
while(first1 <= last1 && first2 <= last2) {
if(array.get(first1) <= array.get(first2)) {
tmp.add(array.get(first1));
first1++;
}
else {
tmp.add(array.get(first2));
first2++;
}
}
while(first1 <= last1) {
tmp.add(array.get(first1));
first1++;
}
while(first2 <= last2) {
tmp.add(array.get(first2));
first2++;
}
for(int i = 0; i < (last - first + 1); i++)
array.set(first + i, tmp.get(i));
}
private ArrayList<Integer> array;
}
Python
Merge_Sort.py
def merge_sort(a, first, last):
if first < last:
mid = (first + last) / 2
merge_sort(a, first, mid)
merge_sort(a, mid + 1, last)
merge_array(a, first, mid, last)
def merge_array(a, first, mid, last):
first1 = first
last1 = mid
first2 = mid + 1
last2 = last
tmp = []
while first1 <= last1 and first2 <= last2:
if a[first1] <= a[first2]:
tmp.append(a[first1])
first1 += 1
else:
tmp.append(a[first2])
first2 += 1
while first1 <= last1:
tmp.append(a[first1])
first1 += 1
while first2 <= last2:
tmp.append(a[first2])
first2 += 1
for i in range(0, last - first + 1):
a[first + i] = tmp[i]
test.py
import Merge_Sort
a = [3, 5, 4, 2, 6, 1, 0, 7]
length = len(a)
Merge_Sort.merge_sort(a, 0, length - 1)
print a