ImageNet Classification with Deep Convolutional Nerual Networks(AlexNet)

本文介绍了一个8层深度学习网络的设计细节,包括5个卷积层和3个全连接层。探讨了ReLU非线性激活函数的优势,以及如何通过重叠池化减少错误率并提高模型泛化能力。此外,还讨论了数据增强和Dropout两种减少过拟合的有效手段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Architecture:

  整个网络8层,5个卷积层,3个全连接层

  Relu Nonlinearity:

    非饱和的relu比饱和的sigmoid或者tanh训练速度快很多,并有效解决梯度消失

  Overlapping Pooling:

    论文中整个网络都使用重叠网络,分别降低top-1、top-5的错误率0.4%、0.3%,并且发现会是网络更加难以过拟合。

Reducing Overfitting:

  Data Augmentation:

    最简单和最常用的减少过拟合的方式是人为地扩大数据集。数据增强有两种方式,这两种方式都是对原图像进行很少的计算,不需要存储在硬盘上。

    1.图像转换和水平翻转。分别从256x256大小的原图像和翻转图像中随机提取224x224大小的块来增加图像数量。没有足够的数据,将限制网络的大小。

    2.改变RGB通道的强度。

  Dropout:

    每次训练,dropout随机选择不参与网络的神经元(既不参与前向传播、也不参与反向传播),相当于每次产生不同的网络结构,但他们是权值共享的,最后训练出来的模型相当于把这些模型结合起来,这种方式有效防止过拟合。

 

 

http://blog.youkuaiyun.com/liumaolincycle/article/details/50496499  翻译

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值