[再寄小读者之数学篇](2015-06-24 积分不等式)

本文通过解析给定的数学问题,详细展示了如何利用Newton-Leibniz公式、Fubini定理及Cauchy-Schwarz不等式证明特定条件下函数积分平方与二次导数积分平方之间的不等式关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(AMM. Problems and Solutions. 2015. 01) Let $f$ be a twice continuously differentiable function from $[0,1]$ into $\bbR$. Let $p$ be an integer greater than $1$. Given that $$\bex \sum_{k=1}^{p-1} f\sex{\frac{k}{p}}=-\frac{1}{2}[f(0)+f(1)], \eex$$ prove that $$\bex \sez{\int_0^1 f(x)\rd x}^2\leq \frac{1}{5!p^4} \int_0^1 [f''(x)]^2\rd x. \eex$$ 

证明: By Newton-Leibniz formula and Fubini's theorem, we have $$\beex \bea \int_0^1 f(x)\rd x&=\sum_{k=1}^p \int_\frac{k-1}{p}^\frac{k}{p}f(t)\rd t =\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p} \sez{f\sex{\frac{k-1}{p}}+\int_{\frac{k-1}{p}}^t f'(s)\rd s}\rd t\\ &=\frac{1}{p} \sum_{k=1}^p f\sex{\frac{k-1}{p}} +\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p} \int_{\frac{k-1}{p}}^tf'(s)\rd s\rd t\\ &=\frac{1}{p} \sez{f(0)-\frac{1}{2}(f(0)+f(1))} +\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p} \sex{\frac{k}{p}-t}f'(t)\rd t\\ &=-\frac{1}{2p}[f(1)-f(0)] +\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p} \sex{\frac{k}{p}-t}f'(t)\rd t\\ &=-\frac{1}{2p}\sum_{k=1}^p \sez{f\sex{\frac{k}{p}}-f\sex{\frac{k-1}{p}}} +\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p} \sex{\frac{k}{p}-t}f'(t)\rd t\\ &=\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p} f'(t)\sex{\frac{k}{p}-t-\frac{1}{2p}}\rd t\\ &=\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p} \sex{\frac{k}{p}-t-\frac{1}{2p}}\sez{f'\sex{\frac{k-1}{p}}+\int_{\frac{k-1}{p}}^t f''(s)\rd s}\rd t\\ &=\sum_{k=1}^p f'\sex{\frac{k-1}{p}}\int_{\frac{k-1}{p}}^\frac{k}{p} \sex{\frac{k}{p}-t-\frac{1}{2p}}\rd t\\ &\quad +\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p} \sex{\frac{k}{p}-t-\frac{1}{2p}}\int_{\frac{k-1}{p}}^t f''(s)\rd s\rd t\\ &=\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p} \sex{\frac{k}{p}-t-\frac{1}{2p}}\int_{\frac{k-1}{p}}^t f''(s)\rd s\rd t\\ &=\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p}f''(s)\int_s^\frac{k}{p} \sex{\frac{k}{p}-t-\frac{1}{2p}}\rd t\rd s, \eea \eeex$$ Then invoking the Cauchy-Schwarz inequality, we obtain $$\beex \bea \sez{\int_0^1 f(x)\rd x}^2 &=\sez{\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p}f''(s)\int_s^\frac{k}{p} \sex{\frac{k}{p}-t-\frac{1}{2p}}\rd t\rd s}^2\\ &\leq p\sum_{k=1}^p \sez{ \int_{\frac{k-1}{p}}^\frac{k}{p}f''(s)\int_s^\frac{k}{p} \sex{\frac{k}{p}-t-\frac{1}{2p}}\rd t\rd s}^2\\ &\leq p\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p} [f''(s)]^2\rd s \cdot \int_{\frac{k-1}{p}}^\frac{k}{p} \sez{\int_s^\frac{k}{p} \sex{\frac{k}{p}-t-\frac{1}{2p}}\rd t}^2\rd s\\ &=p\sum_{k=1}^p \int_{\frac{k-1}{p}}^\frac{k}{p} [f''(s)]^2\rd s\cdot \frac{1}{120p^5}\\ &=\frac{1}{5!p^4} \int_0^1 [f''(x)]^2\rd x. \eea \eeex$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值