Problem Description
Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
Input
The first line of the input contains an integer T, the number of test cases.
For each test case, the first line contains two integers N(1 <= N <= 10 5) and M(0 <= M <= 10 5).
Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
For each test case, the first line contains two integers N(1 <= N <= 10 5) and M(0 <= M <= 10 5).
Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
Output
For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
Sample Input
2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
Sample Output
Case #1: Yes Case #2: No
Source
题意:给你些边跟它的权值,权值仅仅能是0或者1,要你求出一颗生成树,使得该树的白边的边数为斐波那契数列,白边的权值为1.
思路:我们能够求出须要最小的白边跟最多的白边,又由于生成树的边比較特殊,权值为0,1 所以我们仅仅须要求出最大生成树,便是须要的最多白边数,求出最小生成树,则为须要的最少白边树。
然后仅仅须要推断白边数的区间是否有斐波那契数就能够了。其他的边替换为黑边就能够了
本题另一个坑点。那就是树本身不连通那么就输出No
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int f[100005];
struct p
{
int u,v,w;
}num[100005];
int a[40];
int n,m;
int cnt;
bool cmp1(p x,p y)
{
return x.w<y.w;
}
bool cmp2(p x,p y)
{
return x.w>y.w;
}
int find(int x)
{
if(x!=f[x])
f[x]=find(f[x]);
return f[x];
}
int kra()
{
int i,tot=n;
int sum=0;
for(i=0;i<cnt;i++)
{
int x=find(num[i].u);
int y=find(num[i].v);
if(x==y)
continue;
f[x]=y;
sum+=num[i].w;
tot--;
if(tot==0)break;
}
return sum;
}
int main()
{
int i,j;
int t;
a[1]=1;
a[2]=2;
for(i=3;i<=25;i++)
a[i]=a[i-2]+a[i-1];
scanf("%d",&t);
int tot=1;
while(t--)
{
scanf("%d %d",&n,&m);
for(i=1;i<=n;i++)
f[i]=i;
cnt=0;
for(i=1;i<=m;i++)
{
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
num[cnt].u=a;
num[cnt].v=b;
num[cnt++].w=c;
}
sort(num,num+cnt,cmp2);
int ran1=kra();
for(i=1;i<=n;i++)
f[i]=i;
sort(num,num+cnt,cmp1);
int ran2=kra();
bool ff = true;
for(int i = 1;i <= n;i++)
if(find(i) != find(1))
{
ff = false;
break;
}
if(!ff)
{
printf("Case #%d: No\n",tot++);
continue;
}
int flag=0;
for(i=1;i<25;i++)
if(a[i]>=ran2&&a[i]<=ran1)
flag=1;
if(flag)
printf("Case #%d: Yes\n",tot++);
else
printf("Case #%d: No\n",tot++);
}
return 0;
}