[POJ] The Triangle

本文介绍了一个经典的动态规划问题——求解三角形路径中的最高数值和。通过递归地从底部向上更新每个节点的最大可能值,最终得到顶部节点的值即为所求的最大路径和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Triangle
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 47278 Accepted: 28608

Description

7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right. 

Input

Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.

Output

Your program is to write to standard output. The highest sum is written as an integer.

Sample Input

5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5

Sample Output

30

 

//利用动态规划解决问题
#include<iostream>
using namespace std;

int a[101][101]; //二维数组储存三角形中的数

int main()
{
	int n;
	cin>>n;

	for(int i=0;i<n;i++)
		for(int j=0;j<=i;j++)
			cin>>a[i][j];

	for(int i=n-2;i>=0;i--)
		for(int j=0;j<=i;j++)
			a[i][j]+=(a[i+1][j]>a[i+1][j+1]?a[i+1][j]:a[i+1][j+1]);
    //动态规划决策,从后往上加,加到最后最大值为顶端的值

	cout<<a[0][0]<<endl;

	return 0;
}

  

转载于:https://www.cnblogs.com/KennyRom/p/6477084.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值