matlab使用经验模式分解emd 对信号进行去噪

本文介绍了如何在MATLAB中利用经验模式分解(EMD)对包含明显频率变化的非平稳信号进行去噪。通过可视化残余和内在模式功能,展示了EMD在识别和分离不同频率成分方面的效果,适用于分析如手提钻振动或烟花声等非平稳信号。

对于这个例子,考虑由具有明显频率变化的正弦波组成的非平稳连续信号。手提钻的振动或烟花声是非平稳连续信号的例子。

以采样频率加载非平稳信号数据fs,并可视化混合正弦信号。

load('sinusoidalSignalExampleData.mat','X','fs'); 
 
xlabel('Time(s)');

观察到混合信号包含具有不同幅度和频率值的正弦波。

为了创建希尔伯特谱图,您需要信号的IMF。执行经验模式分解以计算信号的固有模式函数和残差。由于信号不平滑,请指定' pchip'作为Interpolation方法。

[imf,residual,info] = emd(X,'Interpolation','pchip');
目前的IMF | #Sift Iter | 相对Tol | 停止标准命中   
      1 | 2 | 0.026352 | SiftMaxRelativeTolerance 
      2 | 2 | 0.0039573 | SiftMaxRelativeTolerance 
      3 | 1 | 0.024838 | SiftMaxRelativeTolerance 
      4 | 2 | 0.05929 | SiftMaxRelativeTolerance 
      5 | 2 | 0.11317 | SiftMaxRelativeTolerance 
      6 | 2 | 0.12599 | SiftMaxRelativeTolerance 
      7 | 2 | 0.13802 | SiftMaxRelativeTolerance 
      8 
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值