搜索专题: HDU1258Sum It Up

本文介绍了一个经典的组合数学问题——寻找所有可能的数的组合,这些组合的元素之和等于给定的目标值。该问题通过深度优先搜索(DFS)算法解决,并详细展示了如何遍历所有可能的组合来找到满足条件的数的总和。输入包含多个测试用例,每个测试用例由目标总和及一系列整数组成,输出则是所有不同的组合方式。

Sum It Up

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6720    Accepted Submission(s): 3535


Problem Description
Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.
 

Input
The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.
 

Output
For each test case, first output a line containing 'Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line 'NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice.
 

Sample Input

  
4 6 4 3 2 2 1 1 5 3 2 1 1 400 12 50 50 50 50 50 50 25 25 25 25 25 25 0 0
 

Sample Output

  
Sums of 4: 4 3+1 2+2 2+1+1 Sums of 5: NONE Sums of 400: 50+50+50+50+50+50+25+25+25+25 50+50+50+50+50+25+25+25+25+25+25
 

Source
Problem : 1258 ( Sum It Up )     Judge Status : Accepted
RunId : 21150701    Language : G++    Author : hnustwanghe
Code Render Status : Rendered By HDOJ G++ Code Render Version 0.01 Beta
#include<iostream> #include<cstdio> #include<cstring> #include<set> #include<algorithm> using namespace std; const int N = 50+5; int x,n,a[N],save[N],pos; bool flag; bool cmp(const int x,const int y){ return x>y; } void DFS(int sum,int d){ if(sum>x) return; if(sum==x){ flag = false; for(int i=0;i<pos-1;i++) printf("%d+",save[i]); printf("%d\n",save[pos-1]); return ; } int last = -1; for(int i=d+1;i<=n;i++){ if(a[i]!=last){ save[pos++] = a[i]; last = a[i]; DFS(sum+a[i],i); pos--; } } } int main(){ while(scanf("%d %d",&x,&n)==2 &&(x||n)){ for(int i=1;i<=n;i++) scanf("%d",&a[i]); sort(a+1,a+n+1,cmp); flag = true; printf("Sums of %d:\n",x); DFS(0,0); if(flag) printf("NONE\n"); } }
#include<iostream>
#include<cstdio>
#include<cstring>
#include<set>
#include<algorithm>

using namespace std;

const int N = 50+5;
int x,n,a[N],save[N],pos;
bool flag;
bool cmp(const int x,const int y){
    return x>y;
}
void DFS(int sum,int d){
    if(sum>x) return;
    if(sum==x){
        flag = false;
        for(int i=0;i<pos-1;i++)
            printf("%d+",save[i]);
        printf("%d\n",save[pos-1]);
        return ;
    }
    int last = -1;
    for(int i=d+1;i<=n;i++){
        if(a[i]!=last){
            save[pos++] = a[i];
            last = a[i];
            DFS(sum+a[i],i);
            pos--;
        }
    }
}
int main(){
    while(scanf("%d %d",&x,&n)==2 &&(x||n)){
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
            sort(a+1,a+n+1,cmp);
            flag = true;
            printf("Sums of %d:\n",x);
            DFS(0,0);
            if(flag)  printf("NONE\n");
    }
}

转载于:https://www.cnblogs.com/Pretty9/p/7347699.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值