POJ 2377 (并查集+sort求最远路)

本文介绍了一种构建最贵生成树的算法实现,旨在帮助理解如何在满足特定条件下找到连接所有节点的最高成本路径。该算法通过排序和并查集确保了最终生成的树既不会形成环路也不包含孤立节点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Bessie has been hired to build a cheap internet network among Farmer John's N (2 <= N <= 1,000) barns that are conveniently numbered 1..N. FJ has already done some surveying, and found M (1 <= M <= 20,000) possible connection routes between pairs of barns. Each possible connection route has an associated cost C (1 <= C <= 100,000). Farmer John wants to spend the least amount on connecting the network; he doesn't even want to pay Bessie. 

Realizing Farmer John will not pay her, Bessie decides to do the worst job possible. She must decide on a set of connections to install so that (i) the total cost of these connections is as large as possible, (ii) all the barns are connected together (so that it is possible to reach any barn from any other barn via a path of installed connections), and (iii) so that there are no cycles among the connections (which Farmer John would easily be able to detect). Conditions (ii) and (iii) ensure that the final set of connections will look like a "tree".

Input

* Line 1: Two space-separated integers: N and M 

* Lines 2..M+1: Each line contains three space-separated integers A, B, and C that describe a connection route between barns A and B of cost C.

Output

* Line 1: A single integer, containing the price of the most expensive tree connecting all the barns. If it is not possible to connect all the barns, output -1.

Sample Input

5 8
1 2 3
1 3 7
2 3 10
2 4 4
2 5 8
3 4 6
3 5 2
4 5 17

Sample Output

42

Hint

OUTPUT DETAILS: 


The most expensive tree has cost 17 + 8 + 10 + 7 = 42. It uses the following connections: 4 to 5, 2 to 5, 2 to 3, and 1 to 3.
 
题意:
  找到能使这些数相连的不构成环的最远路。
 1 #include<cstdio>
 2 #include<algorithm>
 3 using namespace std;
 4 int sum,n,m,i,fa[20010];
 5 int find(int a)
 6 {
 7     int r=a;
 8     while(r != fa[r])
 9     {
10         r=fa[r];
11     }
12     return r;
13 }
14 struct stu
15 {
16     int a,b,c;
17 }st[20010];
18 bool cmp(stu a,stu b)
19 {
20     return a.c>b.c;
21 }
22 void f1(int x,int y)
23 {
24     int nx,ny;
25     nx=find(x);
26     ny=find(y);
27     if(nx != ny)
28     {
29         fa[nx]=ny;
30     }
31 }
32 int main()
33 {
34     while(scanf("%d %d",&n,&m)!=EOF)
35     {
36         sum=0;
37         for(i = 1 ; i <= n ;i++)
38         {
39             fa[i]=i;
40         }
41         for(i = 0 ; i < m ; i++)
42         {
43             scanf("%d %d %d",&st[i].a,&st[i].b,&st[i].c);
44         }
45         sort(st,st+m,cmp);                            //对最远路径排序 
46         for(i = 0 ; i < m ; i++)
47         {
48             if(find(st[i].a) != find(st[i].b))        //判断有没有环 
49             {
50                 f1(st[i].a,st[i].b);
51                 sum+=st[i].c;
52             }
53         }
54         int ans=0;
55         for(i = 1 ; i <= n ; i++)
56         {
57             if(fa[i] == i)            //判断有没有独立点 
58             {
59                 ans++;
60             }
61         }
62         if(ans > 1)
63             printf("-1\n");
64         else
65             printf("%d\n",sum);
66     }
67  } 

 

转载于:https://www.cnblogs.com/yexiaozi/p/5728403.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值