[poj 2377]Bad Cowtractors

本文介绍了一种基于Kruskal算法实现的构建最昂贵生成树的方法,旨在满足特定条件下生成连接所有节点的最高成本树形结构的需求。该算法特别之处在于最大化总成本的同时确保无环且所有节点相连。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bad Cowtractors

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 10194 Accepted: 4333

Description

Bessie has been hired to build a cheap internet network among Farmer John's N (2 <= N <= 1,000) barns that are conveniently numbered 1..N. FJ has already done some surveying, and found M (1 <= M <= 20,000) possible connection routes between pairs of barns. Each possible connection route has an associated cost C (1 <= C <= 100,000). Farmer John wants to spend the least amount on connecting the network; he doesn't even want to pay Bessie. 
Realizing Farmer John will not pay her, Bessie decides to do the worst job possible. She must decide on a set of connections to install so that (i) the total cost of these connections is as large as possible, (ii) all the barns are connected together (so that it is possible to reach any barn from any other barn via a path of installed connections), and (iii) so that there are no cycles among the connections (which Farmer John would easily be able to detect). Conditions (ii) and (iii) ensure that the final set of connections will look like a "tree".

Input

* Line 1: Two space-separated integers: N and M 
* Lines 2..M+1: Each line contains three space-separated integers A, B, and C that describe a connection route between barns A and B of cost C.

Output

* Line 1: A single integer, containing the price of the most expensive tree connecting all the barns. If it is not possible to connect all the barns, output -1.

Sample Input

5 8
1 2 3
1 3 7
2 3 10
2 4 4
2 5 8
3 4 6
3 5 2
4 5 17

Sample Output

42


最大生成树裸题
用kruskal算法与最小生成树的差别仅在一个符号间
注意输出“-1”
以及若用prim需考虑重边

 1 #include<iostream>
 2 #include<algorithm>
 3 #include<cmath>
 4 #include<cstdio>
 5 #include<cstdlib>
 6 #include<cstring>
 7 
 8 using namespace std;
 9 
10 long long int n,m,a,b,ans,tmp=1;
11 int u[21100],v[21100],w[21100],r[21100],p[1101];
12 int cmp(const int i,const int j){return w[i]>w[j];}
13 int find(int x){return p[x]==x?x:p[x]=find(p[x]);}
14 void kruskal()
15 {
16     for(int i=1;i<=m;i++)r[i]=i;
17     for(int i=1;i<=n;i++)p[i]=i;
18     sort(r+1,r+1+m,cmp);
19     for(int i=1;i<=m;i++)
20     {
21         int e=r[i];
22         int x=find(u[e]);
23         int y=find(v[e]);
24         if(x!=y)
25         {
26             ans+=w[e];
27             p[x]=y;
28             tmp++;
29         }
30     }
31 }
32 int main()
33 {
34     scanf("%d%d",&n,&m);
35     for(int i=1;i<=m;i++)scanf("%d%d%d",&u[i],&v[i],&w[i]);
36     kruskal();
37     if(tmp!=n)printf("-1");
38     else printf("%d",ans);
39     system("pause");
40     return 0;
41 }
View Code

 

 

转载于:https://www.cnblogs.com/taojy/p/7159022.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值