POJ1797(Heavy Transportation)

本文介绍了一个最大流量问题的解决方法,通过使用Dijkstra算法的变种来找出从起点到终点的最大流量路径。该方法适用于寻找特定城市规划中,从一个起点到终点的最大允许重量路径,确保所有街道的重量限制得到遵守。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Heavy Transportation
 

Description

Background
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4
 
 
#include  < iostream >
#include 
< cstdio >
#include 
< queue >
using   namespace  std;

#define  MAXN 1020
#define  INFF INT_MAX

struct  point 
ExpandedBlockStart.gifContractedBlock.gif

    
int vex, cost; 
    
bool operator <(const point it)const 
ExpandedSubBlockStart.gifContractedSubBlock.gif    
{
        
return cost < it.cost;
    }
 
}
;

int  graph[MAXN][MAXN];
int  D[MAXN];
int  Visited[MAXN];
int  n, m;

int  Djikstra()
ExpandedBlockStart.gifContractedBlock.gif
{
    priority_queue
<point> Q;
    
int maxv, i, k=0;
    
int vex;
    point pp;

ExpandedSubBlockStart.gifContractedSubBlock.gif    
/**////初始化/
    for(i=1; i<=n; i++)
ExpandedSubBlockStart.gifContractedSubBlock.gif    
{
        Visited[i] 
= false;
        D[i] 
= 0;
    }


    pp.vex 
= 1; pp.cost = INFF;
    Q.push( pp);
    D[
1]=INFF;
        
    
while(k<&& !Q.empty())
ExpandedSubBlockStart.gifContractedSubBlock.gif    
{
        pp 
= Q.top();
        Q.pop();
        vex 
= pp.vex;
        maxv 
= pp.cost;
        
if(Visited[vex])continue;
        k
++;

        
if(vex == n)
            
return D[n];

        Visited[vex] 
= true;

        
for(i=1; i<=n; i++)
ExpandedSubBlockStart.gifContractedSubBlock.gif        
{/**/////
            //这里是关键部分,以为是单源路径D[i] < maxv是必须
            
//Dijkstra变形求网络流的改变即在此
            if(!Visited[i] && D[i]<graph[vex][i] && D[i]<maxv )
ExpandedSubBlockStart.gifContractedSubBlock.gif            
{
                D[i] 
= min (maxv , graph[vex][i]);
                pp.vex 
= i; pp.cost = D[i];
                Q.push(pp);
            }

ExpandedSubBlockStart.gifContractedSubBlock.gif        }
/**////
    }

        
return 0;
}


int  main()
ExpandedBlockStart.gifContractedBlock.gif
{
    
int i, j, a, b, cost, T;
    scanf(
"%d"&T);

    
for(int k = 1; k <= T; k++)
ExpandedSubBlockStart.gifContractedSubBlock.gif    
{
        scanf(
"%d%d"&n, &m);
            
for(i=1 ;i<=n; i++)
                
for(j=1; j<=n; j++)
                    graph[i][j] 
= 0;
        
while ( m-- )
ExpandedSubBlockStart.gifContractedSubBlock.gif        
{
            scanf(
"%d %d %d"&a, &b, &cost);
            graph[a][b] 
= graph[b][a] = cost;
        }


        printf (
"Scenario #%d:\n%d\n\n", k, Djikstra());
    }

    
return 0;
}


转载于:https://www.cnblogs.com/Xredman/archive/2009/04/19/1439119.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值