
本文为 AI 研习社编译的技术博客,原标题 :
Customer segmentation using Machine Learning K-Means Clustering
翻译 | 吕鑫灿、就2 校对 | 就2 整理 | 志豪
原文链接:
http://www.patterns7tech.com/customer-segmentation-using-machine-learning-k-means-clustering/
Rajshekhar Bodhale | 2017年11月17日 | 机器学习
基于信息技术的大多数平台正在生成大量数据。这些数据称为大数据,它承载了大量的商业智能。这些数据互相交融以满足不同的目标和可能性。应用机器学习技术就很有可能为客户创造价值。
问题描述
我们在会计学和物联网领域拥有基于大数据的平台,可以持续生成客户行为和设备监控数据。
识别目标客户群或者基于不同维度分析(推导)模式非常关键,并且实在的为平台提供了优势。
对应想法
假设你有1000个客户使用你的平台并且不断地产生体量庞大的大数据,任何关于这方面的深入见解都将产生新的价值。
作为Patterns7团队不断尝试的机器学习计划和创新事物的一部分,我们对K-Means聚类算法进行了实验,这为客户带来的价值非常惊人。
解决方案
聚类是将一组数据点划分为少量聚类的过程。在本部分中,你将理解并学习到如何实现K-Means聚类。
&n