HDU 6071 Lazy Running (同余最短路 dij)

本文介绍了一道关于寻找满足特定条件的最短路径问题——LazyRunning,并提供了详细的算法解析及实现代码。该问题涉及无限循环路径上的最短距离求解,采用同余最短路径方法解决。

Lazy Running

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1384    Accepted Submission(s): 597


Problem Description
In HDU, you have to run along the campus for 24 times, or you will fail in PE. According to the rule, you must keep your speed, and your running distance should not be less than  K meters.

There are 4 checkpoints in the campus, indexed as p1,p2,p3 and p4. Every time you pass a checkpoint, you should swipe your card, then the distance between this checkpoint and the last checkpoint you passed will be added to your total distance.

The system regards these 4 checkpoints as a circle. When you are at checkpoint pi, you can just run to pi1 or pi+1(p1 is also next to p4). You can run more distance between two adjacent checkpoints, but only the distance saved at the system will be counted.




Checkpoint p2 is the nearest to the dormitory, Little Q always starts and ends running at this checkpoint. Please write a program to help Little Q find the shortest path whose total distance is not less than K.
 

 

Input
The first line of the input contains an integer  T(1T15), denoting the number of test cases.

In each test case, there are 5 integers K,d1,2,d2,3,d3,4,d4,1(1K1018,1d30000), denoting the required distance and the distance between every two adjacent checkpoints.
 

 

Output
For each test case, print a single line containing an integer, denoting the minimum distance.
 

 

Sample Input
1 2000 600 650 535 380
 

 

Sample Output
2165
Hint
The best path is 2-1-4-3-2.
 

 

Source
【题意】四个点连成环,相邻两个点之间有距离,问从点 1 出发回到点1 ,总距离超过K 的最短路是多少。
【分析】像这种无限走下去的题,可以用同余最短路来解。点1相邻的两条边,设最短的那条长度为,m,那么存在一条长度为x的回到1节点的路,就一定存在长度为x+2*m的路。
  dis[i][j]表示到达i点总长度%2*m==j的最短路,然后dij就行了。
 
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define rep(i,l,r) for(int i=(l);i<=(r);++i)
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 6e4+50;;
const int M = 255;
const int mod = 19260817;
const int mo=123;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
typedef pair<ll,int>P;
int n,s;
ll dis[6][N];
ll k,edg[6][6],m,ans;
void dij(int s){
    priority_queue<P,vector<P>,greater<P> >q;
    for(int i=0;i<4;i++){
        for(int j=0;j<=m;j++){
            dis[i][j]=1e18;
        }
    }
    q.push(P(0LL,s));
    while(!q.empty()){
        ll w=q.top().first;
        int u=q.top().second;
        q.pop();
        if(u==s){
            if(w<k){
                ans=min(ans,w+((k-w-1)/m+1)*m);
            }
            else ans=min(ans,w);
        }
        for(int i=0;i<4;i++){
            if(!edg[u][i])continue;
            ll d=w+edg[u][i];
            if(dis[i][d%m]>d){
                dis[i][d%m]=d;
                q.push(P(d,i));
            }
        }
    }
}
int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        ans=1e18;
        scanf("%lld",&k);
        for(int i=0;i<4;i++){
            scanf("%lld",&edg[i][(i+1)%4]);
            edg[(i+1)%4][i]=edg[i][(i+1)%4];
        }
        m=2*min(edg[1][0],edg[1][2]);
        ans=((k-1)/m+1)*m;
        dij(1);
        printf("%lld\n",ans);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/jianrenfang/p/7599448.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值