损失函数

 

Loss Function

Loss function is used to measure the degree of fit. So for machine learning a few elements are:

  1. Hypothesis space: e.g. parametric form of the function such as linear regression, logistic regression, svm, etc.
  2. Measure of fit: loss function, likelihood
  3. Tradeoff between bias vs. variance: regularization. Or bayesian estimator (MAP)
  4. Find a good h in hypothesis space: optimization. convex - global. non-convex - multiple starts
  5. Verification of h: predict on test data. cross validation.

Among all linear methods y=f(θTx)y=f(θTx), we need to first determine the form of ff, and then finding θθ by formulating it to maximizing likelihood or minimizing loss. This is straightforward.

 

For classification, it's easy to see that if we classify correctly we have yf=yθTx>0y⋅f=y⋅θTx>0, and yf=yθTx<0y⋅f=y⋅θTx<0 if incorrectly. Then we formulate following loss functions:

  1. 0/1 loss: minθiL0/1(θTx)minθ∑iL0/1(θTx). We define L0/1(θTx)=1L0/1(θTx)=1 if yf<0y⋅f<0, and =0=0 o.w. Non convex and very hard to optimize.
  2. Hinge loss: approximate 0/1 loss by minθiH(θTx)minθ∑iH(θTx). We define H(θTx)=max(0,1yf)H(θTx)=max(0,1−y⋅f). Apparently HH is small if we classify correctly.
  3. Logistic loss: minθilog(1+exp(yθTx))minθ∑ilog(1+exp⁡(−y⋅θTx)). Refer to my logistic regression notes for details.

For regression:

  1. Square loss: minθi||y(i)θTx(i)||2minθ∑i||y(i)−θTx(i)||2

Fortunately, hinge loss, logistic loss and square loss are all convex functions. Convexity ensures global minimum and it's computationally appleaing.

    • https://www.kaggle.com/wiki/LogarithmicLoss
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值