Triangle

寻找最小路径和:使用动态规划解决三角形问题

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

 

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

思路:

经典的DP。因为限制用O(n)的空间,只需保存最下面一行的数字,然后逐行相加即可。

代码:

 1     int min(int a, int b){
 2         if(a < b)
 3             return a;
 4         return b;
 5     }
 6     int minimumTotal(vector<vector<int> > &triangle) {
 7         // IMPORTANT: Please reset any member data you declared, as
 8         // the same Solution instance will be reused for each test case.
 9         int n = triangle.size();
10         if(n == 0)
11             return 0;
12         vector<int> v = triangle[n-1];
13         int m = n;
14         while(m > 1){
15             for(int i = 0; i < m-1; i++){
16                 v[i] = triangle[m-2][i] + min(v[i], v[i+1]);
17             }
18             m--;
19         }
20         return v[0];
21     }

 

转载于:https://www.cnblogs.com/waruzhi/p/3413319.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值