HDU 2865 Birthday Toy [Polya 矩阵乘法]

本文探讨了一个计数问题,即给定$n$个珠子和$k$种颜色,在相邻珠子颜色不能相同且考虑旋转等价的情况下,求所有可能的染色方案数。通过动态规划与矩阵快速幂的方法解决此问题,并给出了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

题意:

相邻珠子不能相同,旋转等价。$n$个珠子$k$中颜色,求方案数


 

首先中间珠子$k$种选择,$k--$
如果没有相邻不同的限制,就和$POJ\ 2154$一样了
$|C(f)|=k^{\#(f)}$
但是有了相邻不同的限制,每种循环的颜色就不能任意选择了
旋转等价循环个数是$gcd(n,i)$,同一个循环的元素相差$i$步
容易得到只要满足长度$gcd(n,i)$的一段相邻颜色不同整个环就不同了,因为这样的一段正好每个循环有一个元素
考虑$DP$,$f[i]$表示$i$个元素组成的环染色方案数
$f[i]=(k-2)*f[i-1]+(k-1)*f[i-2]$
因为这时候$i-1$是可以和$1$相同的,那样$i$有$k-1$种选择,所以加上后面的一块
显然可以用矩阵快速幂
计算的时候使用和和$POJ\ 2154$同样的技巧
最后的式子为:
$\frac{k}{n}\sum\limits_{d \mid n}{f(d)*\phi(\frac{n}{d})},\ d \neq 1$

 

注意:$Candy?$把矩阵的构造函数里加上了每个矩阵都初始化为单位矩阵,认为这样就不用在做矩阵快速幂前初始化了。

然后就被坑惨了......矩阵乘法里还需要零矩阵啊啊啊啊啊啊啊 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1e5+5,P=1e9+7;
typedef long long ll;
inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
    return x*f;
}
int n;
ll k;
int p[N];
bool notp[N];
void sieve(int n){
    for(int i=2;i<=n;i++){
        if(!notp[i]) p[++p[0]]=i;
        for(int j=1;j<=p[0]&&i*p[j]<=n;j++){
            notp[i*p[j]]=1;
            if(i%p[j]==0) break;
        }
    }
}
inline int phi(int n){
    int re=n,m=sqrt(n);
    for(int i=1;i<=p[0]&&p[i]<=m&&p[i]<=n;i++) if(n%p[i]==0){
        re=re/p[i]*(p[i]-1);
        while(n%p[i]==0) n/=p[i];
    }
    if(n>1) re=re/n*(n-1);
    return re%P;
}
struct Matrix{
    ll a[2][2];
    ll* operator [](int x){return a[x];}
    Matrix(){a[0][0]=a[1][1]=a[0][1]=a[1][0]=0;}
    void ini(){a[0][0]=a[1][1]=1;}
}a,b;
Matrix operator *(Matrix a,Matrix b){
    Matrix c;
    for(int k=0;k<2;k++)
        for(int i=0;i<2;i++) if(a[i][k])
            for(int j=0;j<2;j++) if(b[k][j])
                (c[i][j]+=a[i][k]*b[k][j])%=P;
    return c;
}
Matrix operator ^(Matrix a,int b){
    Matrix re;re.ini();
    for(;b;b>>=1,a=a*a)
        if(b&1) re=re*a;
    return re;
}
ll F[5];
ll f(int x){
    if(x<=3) return F[x];
    Matrix re=a^(x-3);
    re=re*b;
    return re[0][0];
}
inline void mod(int &x){if(x>=P) x-=P;}
inline ll Pow(ll a,int b){
    ll re=1;
    for(;b;b>>=1,a=a*a%P)
        if(b&1) re=re*a%P;
    return re;
}
inline ll Inv(ll a){return Pow(a,P-2);}
void solve(){
    int m=sqrt(n),ans=0;
    for(int i=1;i<=m;i++) if(n%i==0){
        if(i!=1) mod(ans+= f(i)*phi(n/i)%P);
        if(i*i!=n) mod(ans+= f(n/i)*phi(i)%P);
    }
    printf("%lld\n",ans*Inv(n)%P*(k+1)%P);
}
int main(){
    freopen("in","r",stdin);
    sieve(32000);
    while(scanf("%d%lld",&n,&k)!=EOF){
        k--;
        F[1]=k;F[2]=k*(k-1)%P;F[3]=k*(k-1)%P*(k-2)%P;
        a[0][0]=k-2; a[0][1]=k-1;
        a[1][0]=1;     a[1][1]=0;
        b[0][0]=F[3];b[0][1]=0;
        b[1][0]=F[2];b[1][1]=0;
        solve();
    }
}

 

内容概要:本文详细探讨了基于MATLAB/SIMULINK的多载波无线通信系统仿真及性能分析,重点研究了以OFDM为代表的多载波技术。文章首先介绍了OFDM的基本原理和系统组成,随后通过仿真平台分析了不同调制方式的抗干扰性能、信道估计算法对系统性能的影响以及同步技术的实现与分析。文中提供了详细的MATLAB代码实现,涵盖OFDM系统的基本仿真、信道估计算法比较、同步算法实现和不同调制方式的性能比较。此外,还讨论了信道特征、OFDM关键技术、信道估计、同步技术和系统级仿真架构,并提出了未来的改进方向,如深度学习增强、混合波形设计和硬件加速方案。; 适合人群:具备无线通信基础知识,尤其是对OFDM技术有一定了解的研究人员和技术人员;从事无线通信系统设计与开发的工程师;高校通信工程专业的高年级本科生和研究生。; 使用场景及目标:①理解OFDM系统的工作原理及其在多径信道环境下的性能表现;②掌握MATLAB/SIMULINK在无线通信系统仿真中的应用;③评估不同调制方式、信道估计算法和同步算法的优劣;④为实际OFDM系统的设计和优化提供理论依据和技术支持。; 其他说明:本文不仅提供了详细的理论分析,还附带了大量的MATLAB代码示例,便于读者动手实践。建议读者在学习过程中结合代码进行调试和实验,以加深对OFDM技术的理解。此外,文中还涉及了一些最新的研究方向和技术趋势,如AI增强和毫米波通信,为读者提供了更广阔的视野。
### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值