stm32 文件系统dma大小_STM32 DMA使用详解

本文介绍了STM32的DMA(Direct Memory Access)工作原理,说明了它如何减轻CPU负担,实现数据的直接传输。STM32的DMA不会影响CPU运行速度,拥有12个独立通道,支持多种传输类型。文章详细阐述了STM32 DMA的结构、特性、工作特点,并提供了内存到内存模式的传输配置示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、DMA简介

1、DMA简介

DMA(Direct Memory Access:直接内存存取)是一种可以大大减轻CPU工作量的数据转移方式。

CPU有转移数据、计算、控制程序转移等很多功能,但其实转移数据(尤其是转移大量数据)是可以不需要CPU参与。比如希望外设A的数据拷贝到外设B,只要给两种外设提供一条数据通路,再加上一些控制转移的部件就可以完成数据的拷贝。

DMA就是基于以上设想设计的,它的作用就是解决大量数据转移过度消耗CPU资源的问题。有了DMA使CPU更专注于更加实用的操作--计算、控制等。

2、DMA的工作原理

DMA的作用就是实现数据的直接传输,而去掉了传统数据传输需要CPU寄存器参与的环节,主要涉及四种情况的数据传输,但本质上是一样的,都是从内存的某一区域传输到内存的另一区域(外设的数据寄存器本质上就是内存的一个存储单元)。四种情况的数据传输如下:

外设到内存

内存到外设

内存到内存

外设到外设

当用户将参数设置好,主要涉及源地址、目标地址、传输数据量这三个,DMA控制器就会启动数据传输,传输的终点就是剩余传输数据量为0(循环传输不是这样的)。换句话说只要剩余传输数据量不是0,而且DMA是启动状态,那么就会发生数据传输。

3、DMA是否影响CPU的运行

在X86架构系统中,当DMA运作时(假设我们从磁盘拷贝一个文件到U盘),DMA实际上会占用系统总线周期中的一部分时间。也就是说,在DMA未开启前,系统总线可能完全被CPU使用;当DMA开启后,系统总线要为DMA分配一定的时间,以保证DMA和CPU同时运作。那么显然,DMA会降低CPU的运行速度。

在STM32控制器中,芯片采用Cortex-M3架构,总线结构有了很大的优化,DMA占用另外的总线,并不会与CPU的系统总线发生冲突。也就是说,DMA的使用不会影响CPU的运行速度。

二、STM32的DMA结构

1、DMA的主要特性

● 12个 独立的可配置的通道(请求)DMA1有7个通道,DMA2 有5个通道

● 每个通道都直接连接专用的硬件DMA请求,每个通道都同样支持软件触发。这些功能通过

软件来配置。

● 在七个请求间的优先权可以通过软件编程设置(共有四级:很高、高、中等和低),假如在相

等优先权时由硬件决定(请求0优先于请求1,依此类推) 。

● 独立的源和目标数据区的传输宽度(字节、半字、全字),模拟打包和拆包的过程。源和目标

地址必须按数据传输宽度对齐。

● 支持循环的缓冲器管理

● 每个通道都有3个事件标志(DMA 半传输,DMA传输完成和DMA传输出错),这3个事件标志

逻辑或成为一个单独的中断请求。

● 存储器和存储器间的传输

● 外设和存储器,存储器和外设的传输

● 闪存、SRAM 、外设的SRAM 、APB1 APB2和AHB外设均可作为访问的源和目标。

● 可编程的数据传输数目:最大为65536

下面为功能框图:

2、两个DMA控制器结构

① DMA1 controller

② DMA2 controller

3、DMA寄存器列表

① 中断类

DMA_ISR:   DMA中断状态寄存器

DMA_IFCR:  DMA中断标志位清除寄存器

说明:  DMA1、DMA2分别有一组寄存器。

② 控制传输类

DMA_CCRx:   DMA通道x配置寄存器

DMA_CNDTRx:  DMA通道x数据数量寄存器

DMA_CPARx:   DMA通道x外设地址寄存器

DMA_CMARx:  DMA通道x内存地址寄存器

说明:

1> 每一个通道都有一组寄存器。

2> DMA_CPARx、DMA_CMARx是没有差别的,它们都可以存放外设的地址、内存的地址。DMA_CPARx、DMA_CMARx只不过起得名字有差别而已。

4、STM32的DMA工作特点

① DMA进行数据传输的必要条件

剩余传输数据量大于0

DMA通道传输使能

通道上DMA数据传输有事件请求

前两者都好理解,对于第三点确实需要详细的解释,请看下边的三条。

② 外设到XX方向的传输

假设是ADC到存储器的数据传输,显然ADC的DMA传输的源地址是ADC的数据寄存器。并不是说只要DMA通道传输使能后,就立即进行数据传输。只有当一次ADC转化完成,ADC的DMA通道的传输事件有效,DMA才会从ADC的数据寄存器读出数据,写入目的地址。当DMA在读取ADC的数据寄存器时,同时使ADC的DMA通道传输事件无效。显然,要等到下一次ADC转换完成后,才能启动再一次的数据传输。

③存储器对XX的DMA传输

因为数据是准备好的,不像ADC还需要等待数据到位。所以,不需要对应通道的事件。只要使能DMA数据传输就一直传输,直到达到设定的传输量。

example:

1.内存到内存

DMA传输请求一直有效

2.内存到串口

DMA传输请求一直有效

一种解释:

存储器对存储器的置位,就相当于相应通道的事件有效。 对应通道的事件有效和存储器对存储器的置位,就是传输的触发位。每次传输的事件置位一次,完成一次传输。如果是由外设引发的DMA传输,则传输完成后,相应传输事件会置为无效,而存储器对存储器的传输,则一次传输完成后,相应事件一直有效,直至完成设定的传输量。

④外设以DMA方式工作时,能否再以软件方式进行操作?

有一点是肯定的,当外设以DMA方式正在数据传输时,不可能再相应CPU的软件控制命令,否则这不符合逻辑。

但是,倘若外设仅仅配置成DMA工作方式,但是DMA请求并未产生,数据传输并没有进行。此时,软件控制命令仍然能够对外设进行控制。这是笔者在串口以DMA方式发送数据情形下,所得到的测试结论。

三、STM32的DMA软件编程

1、“内存到内存”模式传输

①初始化配置

uint8_t SendBuff[SENDBUFF_SIZE];

uint8_t ReceiveBuff[RXBUFF_SIZE];/**

* @brief USART1 TX DMA 配置,内存到内存

* @param 无

* @retval 无*/

void DMA_Mem2Mem_Config(void)

{

DMA_InitTypeDef DMA_InitStructure;/*开启DMA时钟*/RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);/*设置DMA源地址*/DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)SendBuff;/*设置DMA目的地址*/DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)ReceiveBuff;/*方向:从内存SendBuff到内存ReceiveBuff*/DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralDST;/*传输大小DMA_BufferSize=SENDBUFF_SIZE*/DMA_InitStructure.DMA_BufferSize=SENDBUFF_SIZE;/*ReceiveBuff地址自增*/DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Enable;/*SENDBUFF_SIZE地址自增*/DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;/*ReceiveBuff数据单位*/DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;/*SENDBUFF_SIZE数据单位*/DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;/*DMA模式:正常模式*/DMA_InitStructure.DMA_Mode=DMA_Mode_Normal ;/*优先级:中*/DMA_InitStructure.DMA_Priority=DMA_Priority_Medium;/*使能内存到内存的传输*/DMA_InitStructure.DMA_M2M=DMA_M2M_Enable;/*配置DMA1的4通道*/DMA_Init(DMA1_Channel4,&DMA_InitStructure);/*失能DMA1的4通道,一旦使能就开始传输*/DMA_Cmd (DMA1_Channel4,DISABLE);

}

②DMA中断配置

/**

* @brief DMA 中断配置

* @param 无

* @retval 无*/

void DMA_NVIC_Configuration(void)

{

NVIC_InitTypeDef NVIC_InitStructure;/*配置中断源*/NVIC_InitStructure.NVIC_IRQChannel=DMA1_Channel4_IRQn;

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority= 1;

NVIC_InitStructure.NVIC_IRQChannelSubPriority= 1;

NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;

NVIC_Init(&NVIC_InitStructure);/*配置DMA发送完成后产生中断*/DMA_ITConfig(DMA1_Channel4,DMA_IT_TC,ENABLE);

}

③启动传输

DMA_Cmd (DMA1_Channel4,ENABLE);

2、利用DMA实现循环传输

方法1:单次传输模式

当传输结束时,触发DMA中断,在中断程序中首先失能DMA通道,然后修改该通道的传输数据量。最后重新使能DMA通道,注意只有失能的DMA通道才能成功修改传输数据量。

方法2:循环传输模式

当传输结束时,硬件自动会将传输数据量寄存器进行重装,进行下一轮的数据传输。

四、再谈STM32的DMA传输是否影响CPU的运行速度

声明:经过笔者测试,当DMA工作在内存到外设的传输和内存到内存的传输时,都不会影响CPU的运行速度。为了给这种现象一个合理的解释,笔者做以下猜测:

1、S3C2440的DMA传输

S3C2440的SDRAM是外置的,并且SDRAM的数据线、地址线、控制线总共只有一组。假设DMA传输的方向是内存到外设,当DMA运作时,需要占用SDRAM的三类线才才能实现传输;而与此同时CPU也需要通过这三类线来访问SDRAM来读取程序、读写数据。

显然,DMA的运行与CPU的运行有交叉点,DMA就会影响到CPU的运行。

2、STM32的DMA传输

STM32与S3C2440的区别是很大的,S3C2440是微处理器,RAM外置且空间很大;STM32是微控制器,RAM片内集成且空间较小。此时,ST公司就有可能提升DMA的运作效率,使DMA的工作不影响到CPU的运行。

外设与外设之间的DMA传输,因为与CPU的运行没有交叉点(CPU的数据流注意是在Flash、内存、寄存器中传输),所以不会影响CPU的运行速度。唯一有可能影响的是外设与内存或者内存与内存之间的DMA传输。

倘若ST公司的SRAM是一个双口RAM,也就是同时可以由两组接口对RAM进行访问,就可以很好的解决速度影响问题。倘若CPU恒定占有一组接口,而另一组接口留给DMA控制器。那么当外设与内存或者内存与内存之间的DMA传输时,由于不与CPU的访问SRAM接口冲突,所以可以解决速度影响问题。

但其实偶尔还是会影响的,当CPU访问SRAM的空间和DMA访问SRAM的空间相同时,SRAM势必会对这种情况进行仲裁,这可能会影响到CPU的访问SRAM的速度。其实,这种情况的概率也是很小的,所以即使影响CPU的运行速度,也不会很大。

参考来源:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值