pytorch历史版本下载_ssd.pytorch

该博客介绍了使用PyTorch实现SSD(Single Shot MultiBox Detector),包括安装、数据集下载、训练、评估和演示。支持Visdom进行实时损失可视化,目前支持COCO和VOC数据集,提供了训练脚本和预训练模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SSD: Single Shot MultiBox Object Detector, in PyTorch

A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang, and Alexander C. Berg. The official and original Caffe code can be found here.

ssd.png

Table of Contents

Installation

Install PyTorch by selecting your environment on the website and running the appropriate command.

Clone this repository.

Note: We currently only support Python 3+.

Then download the dataset by following the instructions below.

We now support Visdom for real-time loss visualization during training!

To use Visdom in the browser:

# First install Python server and client

pip installvisdom

# Start the server (probably in a screen or tmux)

python -m visdom.server

Then (during training) navigate to http://localhost:8097/ (see the Train section below for training details).

Note: For training, we currently support VOC and COCO, and aim to add ImageNet support soon.

Datasets

To make things easy, we provide bash scripts to handle the dataset downloads and setup for you. We also provide simple dataset loaders that inherit torch.utils.data.Dataset, making them fully compatible with the torchvision.datasets API.

COCO

Microsoft COCO: Common Objects in Context

Download COCO 2014

# specify a directory for dataset to be downloaded into, else default is ~/data/

sh data/scripts/COCO2014.sh

VOC Dataset

PASCAL VOC: Visual Object Classes

Download VOC2007 trainval & test

# specify a directory for dataset to be downloaded into, else default is ~/data/

sh data/scripts/VOC2007.sh #

Download VOC2012 trainval

# specify a directory for dataset to be downloaded into, else default is ~/data/

sh data/scripts/VOC2012.sh #

Training SSD

By default, we assume you have downloaded the file in the ssd.pytorch/weights dir:

mkdirweights

cdweights

wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth

To train SSD using the train script simply specify the parameters listed in train.py as a flag or manually change them.

python train.py

Note:

For training, an NVIDIA GPU is strongly recommended for speed.

For instructions on Visdom usage/installation, see the Installation section.

You can pick-up training from a checkpoint by specifying the path as one of the training parameters (again, see train.py for options)

Evaluation

To evaluate a trained network:

python eval.py

You can specify the parameters listed in the eval.py file by flagging them or manually changing them.

detection_examples.png

Performance

VOC2007 Test

mAP

Original

Converted weiliu89 weights

From scratch w/o data aug

From scratch w/ data aug

77.2 %

77.26 %

58.12%

77.43 %

FPS

GTX 1060: ~45.45 FPS

Demos

Use a pre-trained SSD network for detection

Download a pre-trained network

We are trying to provide PyTorch state_dicts (dict of weight tensors) of the latest SSD model definitions trained on different datasets.

Currently, we provide the following PyTorch models:

Our goal is to reproduce this table from the original paper

ssd_results.png

Try the demo notebook

Make sure you have jupyter notebook installed.

Two alternatives for installing jupyter notebook:

If you installed PyTorch with conda (recommended), then you should already have it. (Just navigate to the ssd.pytorch cloned repo and run):

jupyter notebook

If using pip:

# make sure pip is upgraded

pip3 install --upgrade pip

# install jupyter notebook

pip installjupyter

# Run this inside ssd.pytorch

jupyter notebook

Now navigate to demo/demo.ipynb at http://localhost:8888 (by default) and have at it!

Try the webcam demo

Works on CPU (may have to tweak cv2.waitkey for optimal fps) or on an NVIDIA GPU

This demo currently requires opencv2+ w/ python bindings and an onboard webcam

You can change the default webcam in demo/live.py

Install the imutils package to leverage multi-threading on CPU:

pip install imutils

Running python -m demo.live opens the webcam and begins detecting!

TODO

We have accumulated the following to-do list, which we hope to complete in the near future

Still to come:

Support for the MS COCO dataset

Support for SSD512 training and testing

Support for training on custom datasets

Authors

Note: Unfortunately, this is just a hobby of ours and not a full-time job, so we'll do our best to keep things up to date, but no guarantees. That being said, thanks to everyone for your continued help and feedback as it is really appreciated. We will try to address everything as soon as possible.

References

Wei Liu, et al. "SSD: Single Shot MultiBox Detector." ECCV2016.

A huge thank you to Alex Koltun and his team at Webyclip for their help in finishing the data augmentation portion.

A list of other great SSD ports that were sources of inspiration (especially the Chainer repo):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值