斐波拉契数列前100项求和c语言,C++斐波那契数列前100项详细数据

本文介绍了斐波那契数列的定义及其计算方式,通过具体例子展示了数列的前几项,并揭示了数列中相邻项之间的关系。此外,还探讨了数列的扩展形式和不同类型数列的特性,包括递增、递减和摆动数列。同时,提到了周期数列和常数数列的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f⑴=C(0,0)=1。

f⑵=C(1,0)=1。

f⑶=C(2,0)+C(1,1)=1+1=2。

f⑷=C(3,0)+C(2,1)=1+2=3。

f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。

f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。

f⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。

……

f(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)

d37e19be726a0e13247218031bcde6ef.png

扩展资料:

(1)有穷数列和无穷数列:

项数有限的数列为“有穷数列”(finite sequence);

项数无限的数列为“无穷数列”(infinite sequence)。

(2)对于正项数列:(数列的各项都是正数的为正项数列)

1)从第2项起,每一项都大于它的前一项的数列叫做递增数列;如:1,2,3,4,5,6,7;

2)从第2项起,每一项都小于它的前一项的数列叫做递减数列;如:8,7,6,5,4,3,2,1;

3)从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列(摇摆数列);

(3)周期数列:各项呈周期性变化的数列叫做周期数列(如三角函数);

(4)常数数列:各项相等的数列叫做常数数列(如:2,2,2,2,2,2,2,2,2)。

参考资料来源:百度百科-斐波那契数列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值