不考虑成为非降序列后停止的限制,那么答案显然是\(\sum\limits_{i=1}^N cnt_i \times (N-i)!\),其中\(cnt_i\)表示长度为\(i\)的非降序列数量
计算\(cnt_i\)使用DP:设\(f_{i,j}\)表示前\(i\)个数中长度为\(j\)、以第\(i\)个数结尾的非降序列数量,转移可以树状数组优化
然后考虑成为非降序列之后停止的限制。容斥一下,对于长度为\(i\)的非降序列,其中的非法情况就是从长度为\(i+1\)的非降序列删掉一个数转移过来,将这一部分减掉就行了
#include<bits/stdc++.h>
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c)){
if(c == '-')
f = 1;
c = getchar();
}
while(isdigit(c)){
a = (a << 3) + (a << 1) + (c ^ '0');
c = getchar();
}
return f ? -a : a;
}
const int MAXN = 2010 , MOD = 1e9 + 7;
int Tree[MAXN][MAXN] , ans[MAXN] , N , cnt , num[MAXN] , lsh[MAXN] , jc[MAXN];
inline int lowbit(int x){
return x & -x;
}
inline void add(int ind , int dir , int num){
while(dir <= cnt){
(Tree[ind][dir] += num) %= MOD;
dir += lowbit(dir);
}
}
inline int get(int ind , int dir){
int sum = 0;
while(dir){
(sum += Tree[ind][dir]) %= MOD;
dir -= lowbit(dir);
}
return sum;
}
int main(){
N = read();
jc[0] = 1;
for(int i = 1 ; i <= N ; ++i){
num[i] = lsh[i] = read();
jc[i] = 1ll * jc[i - 1] * i % MOD;
}
sort(lsh + 1 , lsh + N + 1);
cnt = unique(lsh + 1 , lsh + N + 1) - lsh - 1;
for(int i = 1 ; i <= N ; ++i)
num[i] = lower_bound(lsh + 1 , lsh + cnt + 1 , num[i]) - lsh;
add(0 , 1 , 1);
for(int i = 1 ; i <= N ; ++i)
for(int j = i ; j ; --j)
add(j , num[i] , get(j - 1 , num[i]));
int ans = get(N , cnt);
for(int j = N - 1 ; j ; --j){
int t = (1ll * get(j , cnt) * jc[N - j] - 1ll * get(j + 1 , cnt) * (j + 1) % MOD * jc[N - j - 1] % MOD + MOD) % MOD;
(ans += t) %= MOD;
}
cout << ans;
return 0;
}