hdu 5912(迭代+gcd)

本文介绍了一种计算复杂分数表达式的算法,并通过迭代求解和约分的方式给出正确的结果。文章提供了一个完整的C++实现案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fraction

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 97    Accepted Submission(s): 64


Problem Description
Mr. Frog recently studied how to add two fractions up, and he came up with an evil idea to trouble you by asking you to calculate the result of the formula below:


As a talent, can you figure out the answer correctly?
 

 

Input
The first line contains only one integer T, which indicates the number of test cases.

For each test case, the first line contains only one integer n (n8).

The second line contains n integers: a1,a2,an(1ai10).
The third line contains n integers: b1,b2,,bn(1bi10).
 

 

Output
For each case, print a line “Case #x: p q”, where x is the case number (starting from 1) and p/q indicates the answer.

You should promise that p/q is irreducible.
 

 

Sample Input
1 2 1 1 2 3
 

 

Sample Output
Case #1: 1 2
Hint
Here are the details for the first sample: 2/(1+3/1) = 1/2
 
题意:求图上的公式的结果.直接迭代求然后约分
#include <bits/stdc++.h>
using namespace std;
map<int ,int> value;
int a[10],b[10];
int gcd(int x,int y){
    return y==0?x:gcd(y,x%y);
}
int main()
{
    int tcase,t=1;
    scanf("%d",&tcase);
    while(tcase--){
        int n,res1,res2;
        scanf("%d",&n);
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        for(int i=1;i<=n;i++) scanf("%d",&b[i]);
        res1 = a[n],res2 = b[n];
        for(int i=n-1;i>=1;i--){
            int k = res1;
            res1 = a[i]*res1+res2;
            res2 = b[i]*k;
        }
        int d = gcd(res1,res2);
        printf("Case #%d: %d %d\n",t++,res2/d,res1/d);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/liyinggang/p/5931382.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值