B1826 [JSOI2010]缓存交换 贪心+离散化+堆

本文探讨了一种在固定容量的Cache中实现最少缺失次数的最优替换策略,通过详细分析和算法设计,解决了在一系列主存访问请求下如何选择正确的主存单元进行替换的问题。

这个题仔细一想可以直接贪心做,因为队列里下一个出现的早的一定最优。正确性显然。然后我只拿了50,我直接模拟另一个队列暴力修改最后一个点的nxt值,自然会T。但是其实不用修改,直接插入就行了前面的不影响后面的。然而只有80分,因为没有离散化。

题干:

Description
在计算机中,CPU只能和高速缓存Cache直接交换数据。当所需的内存单元不在Cache中时,则需要从主存里把数据调入Cache。此时,如果Cache容量已满,则必须先从中删除一个。 例如,当前Cache容量为3,且已经有编号为10和20的主存单元。 此时,CPU访问编号为10的主存单元,Cache命中。 接着,CPU访问编号为21的主存单元,那么只需将该主存单元移入Cache中,造成一次缺失(Cache Miss)。 接着,CPU访问编号为31的主存单元,则必须从Cache中换出一块,才能将编号为31的主存单元移入Cache,假设我们移出了编号为10的主存单元。 接着,CPU再次访问编号为10的主存单元,则又引起了一次缺失。我们看到,如果在上一次删除时,删除其他的单元,则可以避免本次访问的缺失。 在现代计算机中,往往采用LRU(最近最少使用)的算法来进行Cache调度——可是,从上一个例子就能看出,这并不是最优的算法。 对于一个固定容量的空Cache和连续的若干主存访问请求,聪聪想知道如何在每次Cache缺失时换出正确的主存单元,以达到最少的Cache缺失次数。
Input
输入文件第一行包含两个整数N和M(1<=M<=N<=100,000),分别代表了主存访问的次数和Cache的容量。 第二行包含了N个空格分开的正整数,按访问请求先后顺序给出了每个主存块的编号(不超过1,000,000,000)。
Output
输出一行,为Cache缺失次数的最小值。
Sample Input
6 2
1 2 3 1 2 3
Sample Output
4
HINT
在第4次缺失时将3号单元换出Cache。
Source
JSOI2010第二轮Contest2

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = 1 << 30;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
    char c;
    bool op = 0;
    while(c = getchar(), c < '0' || c > '9')
        if(c == '-') op = 1;
    x = c - '0';
    while(c = getchar(), c >= '0' && c <= '9')
        x = x * 10 + c - '0';
    if(op) x = -x;
}
template <class T>
void write(T x)
{
    if(x < 0) putchar('-'), x = -x;
    if(x >= 10) write(x / 10);
    putchar('0' + x % 10);
}
struct node
{
    int nxt,w;
    bool operator < (const node &oth) const
    {
        return nxt < oth.nxt;
    }
} a[200010];
int num = 0,n,m,tot,ans = 0;
int lst[200010];
int vis[200010];
int k[200010];
priority_queue <node> qu;
int main()
{
    read(n);
    read(m);
//    cout<<n<<endl;
    duke(i,1,n)
    {
        read(a[i].w);
        k[i] = a[i].w;
    }
    sort(k + 1,k + n + 1);
    int f = unique(k + 1,k + n + 1) - k - 1;
    duke(i,1,n)
    {
        a[i].w = lower_bound(k + 1,k + f + 1,a[i].w) - k;
//        cout<<a[i].w<<endl;
    }
    memset(lst,0x3f,sizeof(lst));
    lv(i,n,1)
    {
        a[i].nxt = lst[a[i].w];
        lst[a[i].w] = i;
    }
    /*duke(i,1,n)
    printf("%d ",a[i].nxt);
    puts("");*/
    duke(i,1,n)
    {
        if(vis[a[i].w] == 0)
        {
            if(tot >= m)
            {
                node f = qu.top();
//                cout<<f.nxt<<" "<<f.w<<endl;
                vis[f.w] = 0;
                tot--;
                qu.pop();
            }
            qu.push(a[i]);
            vis[a[i].w] = 1;
            tot++;
            ans++;
        }
        else
        {
            qu.push(a[i]);
        }
    }
    printf("%d\n",ans);
    return 0;
}

 

转载于:https://www.cnblogs.com/DukeLv/p/9752046.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值