线性求逆元的算法

本文介绍\(O(n)\)处理\([1, n]\)在模\(P\)意义下的逆元的方法。

结论

\[inv_i \equiv -\lfloor \frac{P}{i} \rfloor * inv_{(P \bmod i)} \pmod P\]


证明

现在要求\(i\)的逆元:

\(a = \lfloor \frac{P}{i} \rfloor, b = P \bmod i\),则

\[a * i + b \equiv 0 \pmod P\]
\[-a * i \equiv b \pmod P\]

等式两边同除\(i * b\)

\[-a * inv[b] = inv[i]\]

\(a = \lfloor \frac{P}{i} \rfloor, b = P \bmod i\)代入上式得

\[inv_i \equiv -\lfloor \frac{P}{i} \rfloor * inv_{(P \bmod i)} \pmod P\]

转载于:https://www.cnblogs.com/RabbitHu/p/9070983.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值