Codeforces Round #239 (Div. 1)

本文介绍了一个迷宫问题的动态规划解决方案。问题设定为Vasya在一个由多个房间组成的迷宫中,需要从第一个房间走到最后一个房间。每个房间有两个门,选择门的规则依据已标记次数的奇偶性决定。文章提供了完整的代码实现,包括输入输出和状态转移方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Long Path
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

One day, little Vasya found himself in a maze consisting of (n + 1) rooms, numbered from 1 to (n + 1). Initially, Vasya is at the first room and to get out of the maze, he needs to get to the (n + 1)-th one.

The maze is organized as follows. Each room of the maze has two one-way portals. Let's consider room number i (1 ≤ i ≤ n), someone can use the first portal to move from it to room number (i + 1), also someone can use the second portal to move from it to room numberpi, where 1 ≤ pi ≤ i.

In order not to get lost, Vasya decided to act as follows.

  • Each time Vasya enters some room, he paints a cross on its ceiling. Initially, Vasya paints a cross at the ceiling of room 1.
  • Let's assume that Vasya is in room i and has already painted a cross on its ceiling. Then, if the ceiling now contains an odd number of crosses, Vasya uses the second portal (it leads to room pi), otherwise Vasya uses the first portal.

Help Vasya determine the number of times he needs to use portals to get to room (n + 1) in the end.

Input

The first line contains integer n (1 ≤ n ≤ 103) — the number of rooms. The second line contains n integers pi (1 ≤ pi ≤ i). Each pidenotes the number of the room, that someone can reach, if he will use the second portal in the i-th room.

Output

Print a single number — the number of portal moves the boy needs to go out of the maze. As the number can be rather large, print it modulo 1000000007 (109 + 7).

Sample test(s)
input
2
1 2
output
4
input
4
1 1 2 3
output
20
input
5
1 1 1 1 1
output
62
题意:Vasya在一个由各种房间组成的迷宫里,房间的编号为(1~n),开始Vasya在1号房间,每个房间都有两个门,第一扇门通往下一个房间,第二扇门通往任意一个房间,Vasya决定每到一个房间就在该房间标记一次,如果标记数为奇数就打开第二扇门,否则打开第一扇门,问Vasya走出迷宫需要的步数。
思路:dp[i]表示偶数次到第i个房间的步数,则状态转移方程为dp[i] = dp[i-1]+1+dp[i-1]-dp[a[i]-1]+1;
 1 #include <stdio.h>
 2 #include <iostream>
 3 #include <string.h>
 4 using namespace std;
 5 const int N=1002;
 6 const int MOD=1000000007;
 7 long long dp[N],a[N];
 8 int main()
 9 {
10     int n;
11     while(~scanf("%d",&n))
12     {
13         for (int i = 1; i <= n; i++)
14             cin>>a[i];
15         dp[0] = -1;
16         dp[1] = 1;
17         for (int i = 2; i <= n; i++)
18         {
19             dp[i] = (dp[i-1]+1+dp[i-1]-dp[a[i]-1]+1)%MOD;
20         }
21         cout<<((dp[n]+1)%MOD+MOD)%MOD<<endl;
22     }
23     return 0;
24 }
View Code

 

转载于:https://www.cnblogs.com/lahblogs/p/3635743.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值