从代码层读懂 Java HashMap 的实现原理

概述

Hashmap继承于AbstractMap,实现了Map、Cloneable、Java.io.Serializable接口。它的key、value都可以为null,映射不是有序的。
Hashmap不是同步的,如果想要线程安全的HashMap,可以通过Collections类的静态方法synchronizedMap获得线程安全的HashMap。

Map map = Collections.synchronizedMap(new HashMap());

HashMap 中两个重要的参数:“初始容量” 和 “加载因子”。

容量: 是哈希表中桶的数量,初始容量 只是哈希表在创建时的容量

加载因子: 是哈希表在其容量自动增加之前可以达到多满的一种尺度(默认0.75)。
当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构,桶数X2)。
加载因子越大,填满的元素越多,好处是,空间利用率高了,但:冲突的机会加大了.反之,加载因子越小,填满的元素越少, 好处是:冲突的机会减小了,但:空间浪费多了.

HashMap数据结构

Hashmap本质是数组加链表。通过key的hashCode来计算hash值的,只要hashCode相同,计算出来的hash值就一样,然后再计算出数组下标,如果多个key对应到同一个下标,就用链表串起来,新插入的在前面。

这里写图片描述

先来看看HashMap中Entry类的代码:

static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; // 指向下一个节点 Entry<K,V> next; final int hash; // 构造函数。 // 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)" Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } // 判断两个Entry是否相等 // 若两个Entry的“key”和“value”都相等,则返回true。 // 否则,返回false public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } // 实现hashCode() public final int hashCode() { return (key==null ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode()); } public final String toString() { return getKey() + "=" + getValue(); } // 当向HashMap中添加元素时,绘调用recordAccess()。 // 这里不做任何处理 void recordAccess(HashMap<K,V> m) { } // 当从HashMap中删除元素时,绘调用recordRemoval()。 // 这里不做任何处理 void recordRemoval(HashMap<K,V> m) { } }

可以看出HashMap就是一个Entry数组,Entry对象中包含了键和值两个属性。

HashMap源码分析

HashMap共有4个构造函数,如下:
  • HashMap() 构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空 HashMap。
  • HashMap(int initialCapacity) 构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap。
  • HashMap(int initialCapacity, float loadFactor) 构造一个带指定初始容量和加载因子的空
    HashMap。
  • HashMap(Map<  extends K, extends V> m) 构造一个映射关系与指定 Map 相同的新 HashMap。
HashMap提供的API方法:
  • void clear() 从此映射中移除所有映射关系。
  • Object clone() 返回此 HashMap 实例的浅表副本:并不复制键和值本身。
  • boolean containsKey(Object key) 如果此映射包含对于指定键的映射关系,则返回 true。
  • boolean containsValue(Object value) 如果此映射将一个或多个键映射到指定值,则返回 true。
  • Set entrySet() 返回此映射所包含的映射关系的 Set<Map.Entry> 视图。
  • V get(Object key) 返回指定键所映射的值;如果对于该键来说,此映射不包含任何映射关系,则返回 null。
  • boolean isEmpty() 如果此映射不包含键-值映射关系,则返回 true。
  • Set keySet() 返回此映射中所包含的键的 Set<K> 视图。
  • V put(K key, V value) 在此映射中关联指定值与指定键。
  • void  putAll(Map< extends K, extends V> m)
    将指定映射的所有映射关系复制到此映射中,这些映射关系将替换此映射目前针对指定映射中所有键的所有映射关系。
  • V remove(Object key) 从此映射中移除指定键的映射关系(如果存在)。
  • int  size() 返回此映射中的键-值映射关系数。
  • Collection values() 返回此映射所包含的值的 Collection 视图。

HashMap源码:

package java.util;
import java.io.*;
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { // 默认的初始容量(容量为HashMap中桶的数目)是16,且实际容量必须是2的整数次幂。 static final int DEFAULT_INITIAL_CAPACITY = 16; // 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换) static final int MAXIMUM_CAPACITY = 1 << 30; // 默认加载因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; // 存储数据的Entry数组,长度是2的幂。 // HashMap是采用拉链法实现的,每一个Entry本质上是一个单向链表 transient Entry[] table; // HashMap的大小,它是HashMap保存的键值对的数量 transient int size; // HashMap的阈值,用于判断是否需要调整HashMap的容量(threshold = 容量*加载因子) int threshold; // 加载因子实际大小 final float loadFactor; // HashMap被改变的次数 transient volatile int modCount; // 指定“容量大小”和“加载因子”的构造函数 public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); // HashMap的最大容量只能是MAXIMUM_CAPACITY if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // 找出“大于initialCapacity”的最小的2的幂 int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; // 设置“加载因子” this.loadFactor = loadFactor; // 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。 threshold = (int)(capacity * loadFactor); // 创建Entry数组,用来保存数据 table = new Entry[capacity]; init(); } // 指定“容量大小”的构造函数 public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } // 默认构造函数。 public HashMap() { // 设置“加载因子” this.loadFactor = DEFAULT_LOAD_FACTOR; // 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。 threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR); // 创建Entry数组,用来保存数据 table = new Entry[DEFAULT_INITIAL_CAPACITY]; init(); } // 包含“子Map”的构造函数 public HashMap(Map<? extends K, ? extends V> m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR); // 将m中的全部元素逐个添加到HashMap中 putAllForCreate(m); } static int hash(int h) { h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } // 返回索引值 // h & (length-1)保证返回值的小于length static int indexFor(int h, int length) { return h & (length-1); } public int size() { return size; } public boolean isEmpty() { return size == 0; } // 获取key对应的value public V get(Object key) { if (key == null) return getForNullKey(); // 获取key的hash值 int hash = hash(key.hashCode()); // 在“该hash值对应的链表”上查找“键值等于key”的元素 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; } return null; } // 获取“key为null”的元素的值 // HashMap将“key为null”的元素存储在table[0]位置! private V getForNullKey() { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; } // HashMap是否包含key public boolean containsKey(Object key) { return getEntry(key) != null; } // 返回“键为key”的键值对 final Entry<K,V> getEntry(Object key) { // 获取哈希值 // HashMap将“key为null”的元素存储在table[0]位置,“key不为null”的则调用hash()计算哈希值 int hash = (key == null) ? 0 : hash(key.hashCode()); // 在“该hash值对应的链表”上查找“键值等于key”的元素 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } return null; } // 将“key-value”添加到HashMap中 public V put(K key, V value) { // 若“key为null”,则将该键值对添加到table[0]中。 if (key == null) return putForNullKey(value); // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。 int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出! if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } // 若“该key”对应的键值对不存在,则将“key-value”添加到table中 modCount++; addEntry(hash, key, value, i); return null; } // putForNullKey()的作用是将“key为null”键值对添加到table[0]位置 private V putForNullKey(V value) { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } // 这里的完全不会被执行到! modCount++; addEntry(0, null, value, 0); return null; } // 创建HashMap对应的“添加方法”, // 它和put()不同。putForCreate()是内部方法,它被构造函数等调用,用来创建HashMap // 而put()是对外提供的往HashMap中添加元素的方法。 private void putForCreate(K key, V value) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); // 若该HashMap表中存在“键值等于key”的元素,则替换该元素的value值 

转载于:https://www.cnblogs.com/knightsu/p/7099707.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值